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Abstract

The cost of an algorithm on modern computing platforms depends both on the computation and

"communication". Communication in a general sense is defined as the data movement among levels of

a memory hierarchy or between processors. On modern computer architectures, the communication

cost is often orders of magnitude larger than the computation cost and this gap is rapidly increasing.

This suggests that for the best performance the algorithms should reduce the communication even at

the cost of increased computations.

The need to automatically process big data has driven the rapid development and deployment

of machine learning algorithms. Machine learning applications require some form of mathematical

optimization to find the best parameters obtained by optimizing some objective function representing

the machine learning problem. Second-order optimization methods accelerate the optimization process

by capturing the geometry of the optimization landscape. However, they can be very time-consuming

as they suffer from significant computation and communication overheads. This work presents

techniques and algorithms to accelerate second-order optimization methods on modern computing

platforms.

The performance of second-order methods such as quasi-Newtons and natural gradient descent is

improved on modern computing systems. The sub-sampled quasi-Newton method is accelerated on

distributed memory systems and demonstrates speedups of up to 12× compared to current efficient

implementations. We develop, for the first time, a distributed quasi-Newton algorithm that can achieve

local superlinear convergence that uses asynchronous communications to reduce communication

overheads. We develop a novel framework for implementing asynchronous communication models

on cloud systems that allows practitioners to implement and dispatch asynchronous optimization

methods. A scalable natural gradient descent method is developed that computes the curvature

information efficiently and reduces the training of deep neural networks up to 2.1× on modern

graphical processing units.
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Chapter 1

Introduction

The volume of data currently generated by sensor networks, social media, and computational science
has made manual data processing nearly impossible. The need to automatically process and interpret
this data has driven the rapid development and deployment of machine learning algorithms and
tools which have enabled progress in many critical fields [1–4]. Machine learning encompasses many
different problems like regression, classification, clustering, and dimensionality reduction. All of these
problems have the common task of creating models from an input dataset that can subsequently
be used as predictors (i.e., accurately classify, cluster, etc.) on new data. All of these applications
require some form of mathematical optimization to find the best predictor (i.e., one that minimizes
the prediction error) obtained by maximizing or minimizing some objective function representing the
machine learning problem being solved. Many optimization problems in machine learning including
empirical risk minimization are based on processing large amounts of data as input. Due to the
advances in sensing technologies and storage capabilities the size of the data we can collect and store
increases in an exponential manner [5]. As a consequence, a single processor is typically not capable
of processing and storing all the samples of a dataset. To solve such “big data” problems, we typically
rely on modern computing resources where the data is distributed over a cluster of computing units.
Due to the distributed nature of these systems, the traditional optimization methods are not suitable
to solve such problems. This has made imperative the use of high-performance optimization to solve
these problems.

Second-order optimization methods have gained significant traction in recent years as they acceler-
ate the optimization process by capturing the geometry of the optimization landscape. However, their
execution can be very time-consuming as they suffer from significant computation and communication
overheads when running on modern computing systems [6–8]. In this thesis, we tackle the challenges
of reducing the communication bottlenecks in second-order optimization methods. We investigate the
communication cost of different second-order methods depending on the modern parallel platforms
they are executed on and employ novel techniques to mitigate this cost. The reported performance
and speedups are compared to the fastest available implementations on modern parallel systems.
The first chapter is organized as follows:

Section 1.1 discusses parallel optimization methods in machine learning and briefly reviews the
first-order and second-order optimization methods. Section 1.2 discusses the techniques to develop
high-performance optimization methods by reducing the communication cost on modern parallel
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2 CHAPTER 1. INTRODUCTION

systems. Major contributions of this thesis are discussed in section 1.3.

1.1 Parallel Optimization in Machine Learning

Optimization is one of the main pillars of machine learning where parameters of an optimization
problem are computed based on observed data, i.e., an objective function is optimized by iteratively
updating the model parameters until convergence. However, the speed at which datasets grow in
size is strongly outpacing the evolution of the computational power of single devices, as well as their
memory capacity. Therefore, parallel approaches for training machine learning models have become
tremendously important [9]. In the modern parallel platforms, there are m computing resources such
as processors that are connected via a bus or a network. Typically, each processor has access to a
chunk of data and can communicate with some or all of the processors depending on the underlying
communication. In this case, the objective function is typically defined as:

min
x
F (x) =

1

m

m∑
i=1

fi(x) (1.1)

where x ∈ Rn is the unknown optimization parameters and fi denotes the i-th local objective
functions. When operating on modern parallel platforms, processors have to communicate with
each other or through memory hierarchy to collectively converge to the optimum of the objective
function Equation 1.1. As the number of processing units increases, the communication cost also
increases which depends on factors such as the memory hierarchy and the underlying communication
network. Because communication is often more expensive than computation, increasing the number
of processing units does not always result in improved performance [10, 11]. Therefore, there exists a
trade-off between computation and communication costs for high-performance optimization methods.
Thus adapting such algorithms to run on modern parallel architectures in a reasonable time frame
is fundamental in machine learning. Optimization methods can be categorized based on their use
of curvature information of the objective function to solve Equation 1.1. We briefly review these
methods in the following section.

1.1.1 Optimization Methods

Popular optimization methods can be divided into two major categories based on their use of
curvature information: first-order optimization methods, which are represented by the widely used
stochastic gradient methods; second-order optimization methods, in which Newton’s method is a
typical example.

First-order methods. First-order methods rely solely on gradient information. A typical
example is the gradient descent method:

x←− x− γ∇F (x) (1.2)

where∇F (x) is the gradient of the objective function and γ is the step size. Stochastic gradient descent
is widely used in practice and has been improved in many ways. Examples of such methods include
accelerated SGD [12,13], variance reduction SGD [14], stochastic coordinate descent methods [15,16],
distributed variants of stochastic gradient descent (SGD) [17, 18], and dual coordinate ascent
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algorithms [19]. The common denominator in all of these methods is that they significantly reduce
the amount of local computation. But this blessing comes with an inevitable curse that they, in
turn, may require a far greater number of iterations to converge. Indeed, as a result of their highly
iterative nature, many of these first-order methods require synchronizations in every iteration when
executing on modern parallel systems, and they must do so for many iterations.

Second-order methods. Second-order methods are among the most powerful algorithms in
mathematical optimization. These methods often use a preconditioning matrix to transform the
gradient before applying each step. Classically, the preconditioner is the matrix of second-order
derivatives (the Hessian) in the context of exact deterministic optimization [20]. Second-order
methods often have significantly better convergence properties than first-order methods. Newton
method is a typical example with the following update rule:

x←− x− γH−1
x ∇F (x) (1.3)

Where Hx ∈ Rn×n is the Hessian of the objective function which determines the curvature information
and γ is the step size. Typically computing the Hessian and its inverse is impractical due to its
large size, i.e., n × n, where n is the number of parameters and can be millions. Specifically, the
size of typical problems prohibits their use in practice, as they require quadratic storage, i.e., O(n2),
and cubic computation time, i.e., O(n3 + mn2), for each gradient update. In order to reduce the
overhead of computation and storage requirements, numerous works have been proposed in the prior
work, some of which include Hessian-free, quasi-Newton, Gauss-Newton, and natural gradient descent
methods.

Hessian-free methods use Hessian-vector products to estimate the updates in 1.3. These methods
avoid computing the Hessian and its inverse directly and instead use a linear solver such as conjugate
gradients [21, 22] to obtain hessian-vector products, hence, referred to as Hessian-free methods [23].
Despite making good progress on a per-iteration basis, having to run a conjugate gradient descent
optimization at every iteration proved to be too slow to compete with first-order methods [24]. In
quasi-Newton methods, the Hessian or its inverse is estimated with approaches such as low-rank
approximations [25] or subsampling methods [26]. The most well-known method in this family
is Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm which approximates the Hessian using
changes in the gradients and optimization variable [25, 27]. The more recent work in this area
has focused on stochastic quasi-Newton methods which were proposed and analyzed in various
settings [28–30]. In particular, the limited memory variant of BFGS, L-BFGS, reduces the storage
requirement and is well suited for optimization problems with a large number of variables. Gauss-
Newton methods approximate the Hessian with a positive semidefinite matrix [31]. In contrast to
the Newton method, the Gauss-Newton approach does not require computation or estimation of the
second derivatives of the objective function, however, its implementation would impose infeasible
memory requirements [32]. Hence, approximate Gauss-Newton approaches such as block-diagonal
methods or low-rank approximations have been proposed in recent work [32]. The Natural Gradient
Descent (NGD) method approximates the Hessian with the Fisher information matrix [33]. NGD is
closely related to the Gauss-Newton method and it has been shown that the Fisher coincides with
a generalized Gauss-Newton for a class of optimization problems [33, 34]. Numerous studies have
proposed approximation methods to reduce the computational cost of NGD methods so that NGD
can be used in large-scale models with many parameters, especially, in deep neural networks (DNNs).
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Quasi-Newton and natural gradient descent methods are the main focus of this thesis. In the
following section, the performance bottleneck of optimization methods on modern computing systems
is discussed and the techniques to mitigate this bottleneck are reviewed.

Figure 1.1: Different techniques for reducing communication in optimization methods.

1.2 High-Performance Optimization Methods

Due to the increase in size and complexity of modern datasets, the distributed storage of these
datasets as well as accompanying parallel solution methods are either necessary or at least highly
desirable [35]. The main drawback of big data optimization algorithms comes from the potentially
high communication cost. Communication is defined as data movements in the memory hierarchy
of a single processor or between different processors. On modern computer architectures, the
communication cost is often orders of magnitude larger than the computation cost, i.e., the cost
of floating-point operations (flops), and this gap is increasing [36]. Therefore, there is a trade-off
between communication and computation cost which varies for different optimization methods. Recent
works aim to leverage this trade-off and develop new methods that run faster on modern computing
platforms. This work, as shown in Figure 1.1, can be categorized into two groups: i) iteration
overlapping methods that reformulate the classical optimization methods in exact arithmetic without
changing the convergence behavior and ii) approximate methods that reduce the communication
overhead by introducing some type of error in the computations.

1.2.1 Reducing Communication with Iteration Overlapping Methods

Iteration overlapping methods reformulate the existing algorithms by overlapping a set of iterations to
reduce the communication overheads. These techniques reduce the number of communication rounds,
i.e., the number of messages sent among processors, at the expense of extra computations. These
methods do not involve any approximations if one neglects the numerical round-offs. These methods,
which are also known as communication-avoiding (CA) methods, were first introduced in numerical
linear algebra for solving linear systems [37]. In these works, CA techniques reduce communication
by taking k-steps of the iterative solvers at the same time; data will be on fast memory while the
k-steps of the iterative solver are taken at the same time, reducing memory references considerably.
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Recently, numerous works have adopted overlapping techniques to reduce communication overheads
in optimization methods. These methods attempt to compute multiple iterations of the optimization
problem on each processor before any communication happens. In the first line of work, coordinate
descent methods [38] are accelerated by computing multiple blocks of updates for regularized least
square problems. These methods communicate every s iteration, where s is a tuning parameter that
controls the trade-off between computation and communication cost. Similar attempts have been
made for kernel methods and support vector machines problems [39]. In the second line of work, the
data is partially replicated on different processors and the method is reformulated to cut down on
communication at the expense of redundant computations and extra space, such as sparse inverse
covariance estimation [40]. The amount of replication can change the performance of these methods
and it governs the communication-computation trade-off. To the best of our knowledge, there has
not been any work on iteration overlapping methods for second-order optimization methods.

1.2.2 Reducing Communication with Approximation

Approximate optimization methods attempt to mitigate the communication overheads in two ways: i)
reducing the amount of data sent either between levels of a memory hierarchy or between processors
over a network. These works can be categorized as quantization and sparsification methods. ii)
reducing processors’ idle times by allowing asynchronous communications. We briefly review these
methods in the following.

Quantization. Quantization methods can reduce the amount of data communicated by quantizing
the gradient with a fixed number of bits per problem dimension [41–43]. These methods typically
quantize each coordinate of the input vector separately. For each coordinate, the quantization levels
are distributed either uniformly [41] or non-uniformly [44] within the range of the input vector.
In the extreme case, each coordinate of the gradient vector is reduced to its sign which has been
experimentally observed to preserve convergence under certain conditions [45] while in general, it
can fail due to biased quantization error. Stochastic quantization methods guarantee convergence by
allowing for unbiased quantization error. The convergence of quantized methods is usually analyzed
by relating the variance of the quantized (thus noisy) gradient to the bit rate. [41] showed that
processors can adjust the number of bits sent per iteration, at the cost of possibly higher variance.
Moreover, the communication cost is further reduced using an encoding technique such as Elias
encoding [41]. These works are primarily targeted toward first-order methods and to our knowledge,
there is limited work that applies quantization to second-order optimization methods [46].

Sparsification. Sparsification methods reduce communication by only selecting an “important”
sparse subset of the components to broadcast at each iteration and accumulating the rest locally [47,48].
These methods often produce non-structured vectors after sparsifying the input vector. For example,
top-k sparsification only preserves the k coordinates of the largest magnitude and sends them with
full precision in which the error is controlled by a user-specific accuracy parameter, e.g., k. However,
similar to quantization techniques, the convergence analysis of these methods is challenging. Recent
works try to remedy the convergence failure of sparsification methods by appropriately amplifying
the remaining coordinates to ensure the unbiasedness of the sparsified stochastic gradient [49].

Sparsification techniques can also induce structured sparsity on the gradient or curvature matrix
with methods such as row-wise sparsification [50], group sparsification [51], and block-diagonal
approximations [52]. Structured sparsification appears in the context of neural networks where
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gradient and curvature are represented with weight matrices or high-order tensors. For instance, row-
wise sparsification only selects one row of the weight matrix where the max gradient magnitude lies [50].
Block-diagonal approximations are mainly used for second-order methods to approximate the Hessian
or Fisher information matrix with a block-diagonal matrix where each block corresponds to a specific
set of coordinates or weight matrices [52, 53]. Many works leverage the communication-computation
trade-off and further approximate each block at the expense of accuracy loss. For instance, KFAC [54]
first applies a block-diagonal structure to the Fisher matrix and then approximates every block with
Kronecker factorization.

Asynchronous communication. Asynchronous updates provide an alternative solution to
reduce the communication overhead to a certain amount [55–57]. In synchronous optimization
methods, processors compute the local gradients (or preconditioned gradients) of the objective
function which is then aggregated based on a synchronization mechanism. Therefore, in the presence
of slow processors, i.e., stragglers, all processors have to wait for the slowest one at the synchronization
point. In contrast, the asynchronous optimization methods relax the communication constraints
by allowing the processors to operate independently, which results in better resource usage and
faster implementations. However, the processors can submit a low-quality update of parameters
and, thereby, it can lead to poor convergence properties [58, 59]. Therefore, the careful convergence
analysis of asynchronous parallel methods is arduous, due to the specific difficulties associated with
this setup. For instance, while iterates can usually be clearly defined as a function of the previous
iterates, this is no longer the case when the method is asynchronous because several processors are
writing updates concurrently.

Much work has been devoted recently to proposing and analyzing asynchronous parallel variants
of synchronous optimization methods, both first-order [55, 60] and second-order [56, 61], which
mainly focus on improving their convergence. These methods can be categorized based on the
distributed platform: shared memory systems, i.e., multiple cores of a processor can write to the
parameters independently, and distributed memory systems, i.e., processors’ have their copy of
the parameters. One of the earliest examples of first-order methods developed on shared memory
systems is HogWild, an asynchronous variant of stochastic gradient descent with constant step
size [62], later improved by approaches such as variance reduction techniques [63]. Recent works also
propose several asynchronous algorithms with linear convergence properties on distributed memory
systems [64, 65]. Among second-order optimization algorithms, asynchronous quasi-Newton methods
have been recently proposed for both shared memory [66] and distributed memory [56,66,67] systems
with linear convergence guarantees.

Recent advancements in distributed asynchronous optimization demand a wider range of asyn-
chronous communication models [68–71], often defined by the user. These models adaptively adjust
their parameters during the optimization process to optimize their resource usage. Moreover, dis-
tributed optimization methods operate on batches of data and thus have to be implemented in
cluster-computing engines with a bulk (coarse-grained) computation model. Recently, numerous
distributed frameworks have been developed to simplify implementing and deploying asynchronous
optimization methods. Some works have modified existing coarse-grained synchronous frameworks
such as Spark [72] to support asynchronous optimization methods by adding an extra communication
layer [73]. In the second line of work, several coarse-grained machine learning engines have adopted
the parameter server [74] architecture to implement asynchronous communication between nodes with
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push-pull operations [75,76]. Other distributed parameter server frameworks such as PyTorch [77]
and TensorFlow [78] are specialized for deep learning applications.

1.3 Thesis Contributions

In this thesis, the second-order optimization methods are accelerated on modern computing platforms
by reducing their communication overheads. We focus on two categories of second-order methods,
quasi-Newton approaches, and natural gradient descent. The quasi-Newton methods and in particular,
subsampled and BFGS types, are introduced in chapters 3 and 4 respectively. In chapter 3, we reduce
the communication overhead of a subsampled quasi-Newton method using iteration overlapping
techniques resulting in a scalable optimization method that can achieve significant speedups. In
chapter 4, a BFGS type quasi-Newton method is accelerated using asynchronous communications
with local superlinear convergence guarantees. In order to support different asynchronous executions
on modern parallel platforms and specifically cloud environments, we develop a robust and easy-to-use
framework to implement asynchronous optimization algorithms, studied in chapter 5. Finally, chapter
6 proposes a novel natural gradient method that uses structured sparsification to approximate the
Fisher information matrix in deep neural networks. The major contributions of this thesis are as
follows:

• A novel stochastic variance-reduced algorithm with low communication overheads, called RC-
SFISTA, is introduced that reduces the communication and computation cost of proximal
Newton methods. The convergence analysis of the proposed method shows the same convergence
rate as its deterministic formulation. Other techniques such as Hessian-reuse are presented
which control the trade-off between communication and computation cost.

• The first distributed asynchronous algorithm with superlinear convergence guarantees for master-
slave architectures, called DAve-QN, is presented. The proposed algorithm is communication-
efficient in the sense that at every iteration the master node and slaves communicate small size
vectors.

• A novel framework for machine learning practitioners to implement and dispatch asynchronous
machine learning applications with custom communication models and a robust programming
interface is designed and developed on cloud and distributed platforms. The proposed framework
supports optimization methods that operate on history by using an efficient history recovery
strategy.

• An efficient natural gradient descent method called HyLo is presented which speeds up the
training of neural networks on distributed platforms. The communication and computation
cost of training is reduced by factorizing the Fisher information matrix using novel algorithms
such as Khatri-Rao based interpolative decomposition and sampling. As a result, the training
time of large-scale deep neural networks is significantly accelerated.
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1.4 Summary

The main objective of this work and the importance of second-order optimization for machine learning
applications were discussed in this chapter. The performance bottleneck of parallel optimization
methods was introduced and the existing techniques to tackle this problem were discussed.

1.5 Thesis Outline

The rest of this thesis is organized as follows:

• Chapter 2: gives the background on the notation, empirical risk minimization problem in
machine learning, different regularizations, and least-squares problem. Optimization methods
and, in particular, second-order algorithms used throughout this thesis are also detailed in this
chapter. Afterward, the distributed platforms used in this work are classified and explained.

• Chapter 3: accelerates second-order proximal Newton methods used for solving the regularized
least-squares problem on distributed memory systems by employing iteration overlapping
techniques. The performance of the proposed approach is compared against optimized imple-
mentations for proximal Newton methods.

• Chapter 4: introduces a novel second-order quasi-Newton optimization method for solving
the empirical risk minimization problem that uses asynchronous communications. The pro-
posed method improves current asynchronous second-order methods in convergence rate and
communication cost. It is the first distributed asynchronous method that can achieve local
superlinear convergence rate and is also communication-efficient in the sense that it only requires
communicating a few vectors per iteration.

• Chapter 5: introduces a framework to implement a wide range of asynchronous optimization
methods on distributed cloud systems. The proposed framework supports first and second-
order methods that require a custom user-defined communication model among processors.
The robust programming model and ease-of-implementation on distributed platforms are also
described in this chapter.

• Chapter 6: accelerates the natural gradient descent method for training deep neural networks
by sparsifying the computations. The proposed NGD method uses a computationally-efficient
low-rank factorization to approximate the Fisher information matrix. Finally, its convergence
properties and performance are compared against optimized implementations of other second-
order methods on image classification and segmentation tasks.



Chapter 2

Background

In this chapter, the expected risk minimization problem as the standard framework for many machine
learning applications is introduced. Linear and logistic regression are given as popular examples for
analyzing optimization method performances. Afterward, this chapter reviews the first and second-
order optimization methods that are used throughout this thesis to derive efficient optimization
methods. Finally, this chapter ends with the classification of the modern computing platforms
used in this work and the practical challenges in deriving communication-efficient methods on each
platform. The bold letters are used to denote a vector and ‖.‖ refers to a vector norm. When writing
optimization problems, argmin is used to show that the solution to the optimization problem is the
argument that minimizes the optimization problem. log refers to logarithms with base 2.

2.1 Empirical Risk Minimization

A large fraction of machine learning applications require the solution of an empirical risk minimization
problem (ERM) which is expressed as the minimization of a sum of individual costs associated with
individual elements of a training set. The setting is as follows: Given n machines, each machine
has access to mi samples {ξi,j , yi,j}mij=1 for i = 1, 2, . . . , n. The samples ξi,j are random variables
supported on a set P ⊂ Rd and yi,j is the corresponding response or label. Each machine has a loss
function that is averaged over the local dataset:

fi(x) =
1

mi

mi∑
j=1

φ(x, ξi,j , yi,j) (2.1)

where the function φ : Rp × Rd × R→ R is convex in x for each ξ ∈ Rd and y ∈ R fixed. The goal
is to develop communication-efficient distributed algorithms to minimize the overall empirical loss
defined by

x∗ := argmin
x∈Rp

f(x) := argmin
x∈Rp

1

n

n∑
i=1

fi(x). (2.2)

The examples of least-squares or binary logistic regression are both widely useful and provide
plenty of intuition for this setting, so they often serve as the working illustration. Still, more complex
problems fall into the same category of ERM. These include multiclass classification and structured

9
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prediction problems that arise, for instance in image classification and natural language processing,
or applications in computational biology. Without loss of generality, throughout this section, we
assume each machine has access to one sample to simplify the notations.

2.1.1 Regularization

Machine learning models such as linear regression can learn complicated relationships between their
inputs and outputs. With limited training data, however, many of these complicated relationships
will be the result of sampling noise, so they will exist in the training set but not in real test data
even if it is drawn from the same distribution [79]. This leads to overfitting and many methods have
been developed for reducing it. A typical approach is introducing penalties of various kinds, such as
L1 and L2 regularization.

L2-regularization. In this approach, we use the Euclidean distance as the penalty term. This
involves adding the term λ

2 ‖x‖
2
2 to the loss function, where λ is a hyperparameter. In some cases,

the theoretical motivation for using this type of regularization is clear. For example, in the context
of linear regression, L2 regularization increases the bias of the learned parameters while reducing
their variance across instantiations of the training data; in other words, it is a manifestation of the
bias-variance trade-off [80].

L1-regularization. While L2 regularization is an effective means of achieving numerical stability
and increasing predictive performance, it does not address another problem with least-squares
estimates, the parsimony of the model, and the interpretability of the coefficient values. While the
size of the coefficient values is bounded, minimizing the ERM with a penalty on the L2-norm does
not encourage sparsity and the resulting models typically have non-zero values associated with all
coefficients. It has been proposed that, rather than simply achieving the goal of ‘shrinking’ the
coefficients, higher λ values for the L2 penalty force the coefficients to be more similar to each other
in order to minimize their joint 2-norm [81]. A recent trend has been to replace the L2-norm with an
L1-norm. In this case, the term λ‖x‖1 is added to the objective function. This L1 regularization has
many of the beneficial properties of L2 regularization, but yields sparse models that are more easily
interpreted [82].

2.1.2 Least-Squares Regression

The least-squares problem is widely used in deriving and experimenting with optimization methods.
The empirical loss is defined as:

f(x) :=
1

2n
‖Ax− b‖22 (2.3)

where A ∈ Rn×p is the matrix containing the training samples where each row represents a sample
and b ∈ Rn is the vector of labels.

2.1.3 Logistic Regression

Logistic regression (LR) is a standard probabilistic statistical classification model that has been
extensively used across disciplines such as computer vision, marketing, and social sciences, to name a
few [83]. Different from linear regression, the outcome of LR on one sample is the probability that it
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is positive or negative, where the probability depends on a linear measure of the sample. Therefore,
LR is widely used for classification [84]. The empirical loss for the binary logistic regression is defined
as:

f(x) :=
1

n

n∑
j=1

log(1 + exp(−bja>j x)) (2.4)

where aj ∈ Rp are the feature vectors and bj ∈ {−1,+1} are the labels. The multi-class logistic
regression can be stated using 2.4 where the labels are bj ∈ R.

2.2 First-Order Optimization Algorithms

Over the past decades, several first-order methods have been brought up and widely used in
practice [85,86]. The primitive method is simply gradient descent, which updates the parameters of
the model in the opposite direction of the gradient of the objective function:

xk+1 = xk − γ∇f(xk) (2.5)

where γ is the learning rate. Gradient descent (GD) has been one of the most commonly used
first-order methods. The most computationally taxing part of 2.5 is calculating the gradient which is
done in an exact matter using the entire training data set. However, the gradient can instead be
approximated using a smaller sample (mini-batch) of the data set and thus reduce the computation
needed. This leads to stochastic gradient methods.

Stochastic gradient descent. Since gradient descent has high computational complexity in
each iteration for large-scale data and does not allow the online update, stochastic gradient descent
(SGD) was proposed [85,87]. The idea of stochastic gradient descent is using one sample randomly
to update the gradient per iteration, instead of directly calculating the exact value of the gradient.
The stochastic gradient is an unbiased estimate of the real gradient [85]. The cost of the stochastic
gradient descent algorithm is independent of sample numbers and can achieve sublinear convergence
speed [87]. In this work, we consider the mini-batch version of SGD in which m samples are used to
estimate the gradient. Therefore, the update for SGD is defined as:

xk+1 = xk − γ∇̂f(xk) (2.6)

where ∇̂f(xk) is the estimated gradient using m random samples.
Although practical and effective, GD converges slowly in many applications. To accelerate its

convergence, there has been a surge of interest in accelerated gradient methods, where “accelerated”
means that the convergence rate can be improved without much stronger assumptions or significant
additional computational burden [88]. Nesterov-accelerated methods such as FISTA and Variance-
reduced methods such as SVRG, SAG, and, SAGA are such examples.

2.3 Second-Order Optimization Algorithms

Second-order optimization methods use second-order information to construct updates that account
for the curvature of the objective function [89]. Both the first-order derivative (gradient) and
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second-order derivative (Hessian matrix) are used to approximate the objective function with a
quadratic function, and then minimize it [87]. The general update rule for second-order methods can
be written as :

xk+1 = xk − γHk
−1∇f(xk) (2.7)

where H(xk) ∈ Rp×p is the Hessian matrix at iteration k. Hessian matrix is very large in practice
and therefore it is infeasible to directly compute and inverse it. Various approximations to the
Hessian matrix have been proposed to help alleviate this problem. We briefly review the most related
methods in this section.

2.3.1 Quasi-Newton Methods

The basic idea of the quasi-Newton method is to use a positive definite matrix to approximate the
inverse of the Hessian to reduce its costly computations.

Sub-Sampled Quasi-Newton Methods

One approach is to use sub-sampling techniques, where Hessian matrix H is constructed based on a
randomly selected set of data points:

Hk =
1

|S|
∑
i∈S
∇2fi(xk) (2.8)

where S contains the randomly sampled data points. These methods have been shown effective in
accelerating some machine learning applications [90] and have been further studied in recent work [91].
In this work, a subsampled quasi-Newton approach is used in the derivation of communication-efficient
second-order methods in chapter 3.

BFGS Methods

The most popular quasi-Newton method is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
which is well-liked for its robustness and its self-correcting properties, as well as for the superlinear
convergence it achieves [92,93]. In general, BFGS methods approximate the Hessian matrix using
the following equation:

Hk+1 = Hk −
Hksks

>
k Hk

s>k Hksk
+
yky
>
k

y>k sk
(2.9)

where sk and yk are vectors that are obtained from changes in gradient and optimization variables
respectively.

One of the disadvantages of the BFGS algorithm is the high memory requirements. Limited
Memory BFGS (L-BFGS) is a variant of BFGS, which uses only the recent iterates and gradients to
construct the approximate Hessian, providing improvement in terms of memory usage. The L-BFGS
algorithm avoids storing the sequential approximations of the Hessian matrix which allows it to
generalize well to the high-dimensional setting. More specifically, the algorithm stores information
about the spatial displacement and the change in gradient and uses them to estimate a search
direction without storing or computing the Hessian explicitly [94]. Chapter 4 provides additional
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details on the BFGS algorithm and develops a distributed asynchronous quasi-Newton algorithm
that can achieve superlinear convergence.

2.3.2 Natural Gradient Descent Methods

Natural gradient descent (NGD), pioneered by Amari [95], is an optimization method traditionally
motivated from the perspective of information geometry and works well for many applications as an
alternative to stochastic gradient descent [52]. The update rule for NGD is defined as:

xk+1 = xk − γF−1
k ∇f(xk) (2.10)

where Fk is the Fisher information matrix at iteration k. Fisher matrix is defined as:

F = EPξ,y [∇ log(pξ,y|x)∇ log(pξ,y|x)>] (2.11)

where gradients are taken w.r.t x and Pξ,y(x) is the learned distribution whose density is pξ,y(x).
Fisher and Hessian are closely related and in fact, Fisher can be cast as an approximation of
the Hessian in different ways [52]. Specifically, the Fisher information matrix describes the local
metric of the objective function surface concerning the KL-divergence function [96] and in many
important cases, it is shown to be equivalent to the generalized Gauss-Newton approach, but with
certain properties that favor its use over Gauss-Newton methods [97]. Since it is expensive to
estimate the Fisher information matrix and calculate its inverse, recent work has proposed different
approximations such as block-diagonal [98, 99] for the Fisher matrix, especially for overparametrized
neural networks. Chapter 6 provides additional details on NGD and Fisher matrix and proposes a
communication-efficient method for training neural networks.

2.3.3 Gauss-Newton Methods

The classical Gauss-Newton matrix (or more simply the Gauss-Newton matrix) is the curvature
matrix G which arises in the Gauss-Newton method for non-linear least-squares problems [52]. The
Gauss-Newton matrix is an approximation of the Hessian matrix that avoids the trouble of negative
curvature [100]. Typically, the Gauss-Newton method requires f(x) to be expressed as a composition
of two functions written as f(x) = Q(F (x)) where Q is convex. Then the generalized Gauss-Newton
matrix can be written as:

G = J>HQJ (2.12)

where J is the Jacobian of the function F and HQ is the Hessian of the function Q. Gauss-Newton
method is closely related to natural gradient descent and it has been shown that the generalized
Gauss-Newton matrix is equivalent to the Fisher information matrix if the predictive distribution is
in the exponential family, such as categorical distribution (for classification) or Gaussian distribution
(for regression) [101].
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(a) Shared memory architecture.
(b) Distributed memory architec-
ture.

(c) Hybrid distributed-shared mem-
ory architecture.

Figure 2.1: Classification of the modern parallel systems based on the memory architecture.

2.4 Modern Parallel Architectures

Based on the memory configuration, modern parallel systems are classified into three main categories:
shared memory, distributed memory, and hybrid models which are shown in Figure 2.1.

Shared memory architectures. A shared-memory system, shown in Figure 2.1a, makes a
global physical memory equally accessible to all processors. These systems offer a general and
convenient programming model that enables simple data sharing through a uniform mechanism of
reading and writing shared structures in the common memory [102]. The shared memory space can
either be accessed uniformly by all processors (Uniform Memory Access-UMA) or have a non-uniform
access pattern (Non-Uniform Memory Access-NUMA). A common example of shared memory systems
is Graphical Processing Units (GPUs). GPUs have hundreds of processor cores and thousands of
threads running concurrently on these cores that all have access to the shared memory, also known as
global memory, in the GPU. However, shared-memory multiprocessors typically suffer from increased
contention and longer latencies in accessing the shared memory, which degrades peak performance
and limits scalability compared to distributed systems [102].

Distributed memory architectures. In distributed memory systems, as shown in Figure 2.1b,
inter-processor memories are connected using a network. Each processor has a separate memory
space that is not mapped to others. If a processor requires data located in another memory space,
the programmer has to explicitly manage how data is transferred. Transferring data over the network
is costly and depends on the type of network. The communication cost includes the “bandwidth
cost”, i.e., the number of words sent between processors over a network, and the “latency cost”, i.e.,
the number of messages sent, where a message either consists of a group of contiguous words being
sent. Distributed memory systems are more popular in machine learning as they scale up easily and
can be used in applications with very large datasets. These applications often process the data with
the “data-parallel” approach which is based on partitioning the data into several blocks and running
multiple copies of the same program concurrently, each running on a different data block, thus the
name of the paradigm [103].

Hybrid distributed-shared memory architectures. Hybrid memory models are a combina-
tion of shared and distributed memory architectures, as shown in Figure 2.1c. By connecting shared
memory processors through a network, a hybrid memory model is constructed. The communication
cost in these systems involves both the cost of accessing the shared memory and transferring data via
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the network such as Multi-GPUs systems where multiple GPUs are connected via a network. These
systems are used when the data to be processed does not fit in the global memory of a single GPU.
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Chapter 3

Reducing Communication in
Proximal Newton Methods

In this chapter, the communication cost of a Newton method is reduced by reformulating the
optimization algorithm using iteration overlapping techniques. Our proposed method belongs to the
class of Proximal Newton (PN) methods which are used in solving optimization methods with sparsity
constraints such as L1 regularized least-squares. PN methods are a class of second-order optimization
methods that use a first-order inner solver to solve a subproblem iteratively. Afterward, the solution
of the subproblem is aggregated by communicating data amongst processors. The performance of PN
methods used for solving an optimization problem is limited by the performance of the inner solver
used in these algorithms. Our proposed method uses overlapping techniques to reduce the total
number of communication rounds at the cost of computing multiple iterations of the optimization
problem. The detailed contributions of this chapter are as follows:

• A novel stochastic variance-reduced formulation of the FISTA algorithm, called SFISTA, is
introduced that reduces the computation complexity of PN methods. A convergence theorem
is provided for the stochastic variance-reduced method which shows the same convergence rate
as its deterministic formulation.

• Iterations in the proposed SFISTA method are overlapped to reduce communication rounds
and latency costs without increasing the number of messages.

• A Hessian-reuse algorithm is developed that enables the reuse of data when solving a subproblem
in SFISTA. The parameter S in the Hessian-reuse methods enables finding an efficient trade-off
between computational complexity and communication costs in the algorithm.

• The upper bounds for parameters k in iteration-overlapping and S in the Hessian-reuse method
are provided with respect to machine and algorithm specifications.

• RC-SFISTA is implemented on both MPI and Spark and is compared to the state-of-the-art
framework ProxCoCoA. RC-SFISTA outperforms the classical method up to 12× with MPI on
256 processors. We also demonstrate that RC-SFISTA performs better than ProxCoCoA up to
12× on 256 workers for the tested datasets.
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3.1 Introduction

A popular approach to estimating parameters in convex optimization problems is solving a regularized
least-squares problem [104–106] using proximal methods [107,108]. A common approach to improving
the performance of optimization methods on distributed platforms is to reformulate the algorithm
to reduce the number of iterations needed to reach the optimal solution.Works such as [109, 110]
attempt to improve the convergence properties by applying different solvers to locally stored data.
CoCoA [109] uses a local solver on each machine and shares information between solvers with highly
flexible communication schemes. ProxCoCoA [106], GLMNET [111], and BLITZ [112] propose
communication-efficient algorithms for proximal methods, however, the methods do not necessarily
preserve the exact arithmetic of the conventional algorithm.

Iteration-overlapping techniques [113, 114] reduce the overall communication cost in optimization
methods by unrolling iterations in the algorithm to break the dependencies between vector updates.
These works produce a solution identical to that of the conventional algorithm in exact arithmetic.
k -step Krylov solvers [115, 116] compute k basis vectors at once by unrolling k iterations of the
standard algorithm. P-packSVM [117] proposes an SGD-based algorithm for support vector machines
that communicates every k iterations. CA-BCD [38] reduces communication for the class of l2-
regularization least-squares problems by rearranging the computations to execute k iterations per
communication round, i.e., the total number of times that processors exchange messages over a
network. SA-accBCD [118] applies a similar approach to proximal least-squares problems. While
these works reduce communication costs by reducing the number of communication rounds, they
increase the amount of communicated data at each round, i.e., message size. Also, since these
methods are deterministic, every iteration operates on all the data which leads to high computational
complexity for overdetermined problems.

Overdetermined problems involving a large number of data points are often solved with random
sampling, i.e., a stochastic approach, to reduce the overall computational complexity of the algorithm
by reducing the size of data that the algorithm operates on. Examples of such work include stochastic
formulations of gradient descent [119, 120] and proximal gradient methods [121]. However, the
rate of convergence of a basic stochastic method is slower than that of the deterministic algorithm
due to the variance introduced by random sampling [122]. Stochastic proximal methods such as
Acc-Prox-SVRG [123] and Prox-SVRG [124] propose variance-reduction techniques to overcome
this challenge. Even though the computational complexity of stochastic optimization methods is
lower than deterministic formulations, the performance of stochastic methods is often bound by data
communication required at each iteration of the algorithm.

3.2 Background

This section introduces PN methods for solving a class of optimization problems that arise frequently in
machine learning applications. The performance model used in this work to evaluate the effectiveness
of the proposed reformulations will also be discussed.
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3.2.1 The Proximal Newton Method

Composite optimization problems arise frequently in machine learning and data analytics applications.
For example, consider:

min
w∈Rd

F (w) ≡ f(w) + g(w) (3.1)

where g : Rd → R is a continuous, convex, possibly non-smooth function and f : Rd → R is a convex
function, twice continuously differentiable, with an L-Lipschitz gradient, expressed as:

f(w) =
1

m

m∑
i=1

fi(w) (3.2)

This is a general class of problems that includes numerous machine learning problems including
logistic regression and regularized least-squares problems, or more general empirical risk minimization
problems.

PN methods shown in Algorithm 3.1 are used to solve the optimization problem in (3.1). These
methods could be seen as a generalization of the classical proximal gradient methods where the
curvature of the function, i.e., Hessian, is used to select a search direction [125]. PN methods define
a subproblem at each iteration which can be minimized using a first-order inner solver shown in
line 4 of Algorithm 3.1. First-order methods that use proximal mapping to handle the non-smooth
segment of the objective function in (3.1) are very popular and perform well in practice [126,127].

Algorithm 3.1 Proximal Newton Method
1 Input: w0, {γn}
2 repeat
3 Update Hn, an approximation of Hessian
4 zn = argmin

y

1
2
(y − wn)THn(y − wn)

+∇f(wn)T (y − wn) + g(y)

5 ∆wn = zn − wn
6 wn+1 = wn + γn∆wn

until Stopping conditions are satisfied

Inner Solver

L1-regularized least-squares problem. The general problem in (3.1) can represent a large
class of regression problems. In particular, we focus on the l1-regularized least-squares problem:

f(w) =
1

2m

m∑
i=1

(xTi w − yi)2, g(w) = λ‖w‖1 (3.3)

where xi ∈ Rd is the i -th data point and yi ∈ R is the corresponding label. We set X = [x1, ..., xm] ∈
Rd×m as the input data matrix, where rows are the features and columns are the samples, and
y ∈ Rm holds the labels. w ∈ Rd is the optimization variable, and λ ∈ R is the regularization
(penalty) parameter. In this case, the gradient and Hessian of f(w) is given by:

∇f(w) =
1

m
(XXTw −Xy) H =

1

m
XXT (3.4)

where H ∈ Rd×d is the Hessian and with defining R ∈ Rd as R = 1
mXy, for the l1-regularized
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least-squares problem the gradient of f will be

∇f(w) = Hw −R (3.5)

3.2.2 The Inner Solver

The subproblem in PN methods can be solved using a first-order method. While inner solvers like
coordinate descent [128] are used in PN methods, this work uses FISTA which is the most popular
method in the family of accelerated proximal methods. FISTA has the same convergence rate as
the accelerated coordinate descent methods [125]. The FISTA algorithm is shown in Algorithm 3.2
where the proximal mapping is defined as:

Algorithm 3.2 FISTA
1 Input: w0 = w−1 = 0 ∈ Rd, t0 = 1, γ.
2 for n = 1, ..., N do

3 tn =
1+

√
1+t2n−1

2

4 vn = wn−1 +
tn−1−1

tn
(wn−1 − wn−2)

5 wn = Proxγ(vn − γ∇f(vn))

6 output wN

Proxγ(w) = argmin
x
{ 1

2γ
‖x− w‖2 + g(x)} (3.6)

In this work, we use FISTA as an inner solver for PN methods. We focus on optimizing the
performance of FISTA for l1-regularized least-squares problems and demonstrate that improving
the inner solver performance improves the performance of the PN method by reducing its overall
computation and communication cost.

3.2.3 Performance Model

This work proposes novel formulations of the PN solvers to improve their performance when executed
on distributed hardware platforms. The following elaborates on the performance model used to
demonstrate the effectiveness of the proposed method. The cost of an algorithm includes arithmetic
and communication. Traditionally, algorithms have been analyzed with floating-point operation costs.
However, communication costs are essential in analyzing algorithms in large-scale simulations [129].
The cost of floating-point operations and communication, including bandwidth and latency, can be
combined to obtain the performance model. In this work, we use a simplified model known as the
α−β model [130]. In distributed-memory settings, communication cost includes the “bandwidth cost",
i.e., the number of words sent either between levels of a memory hierarchy or between processors
over a network, and the “latency cost”, i.e., the number of messages sent, where a message either
consists of a group of contiguous words being sent or is used for interprocess synchronization. The
total execution time of an algorithm is:

T = γF + αL+ βW (3.7)
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where T is the overall execution time and γ, α, and β are machine-specific parameters that represent
the cost of one floating-point operation, the cost of sending a message, and the cost of moving a
word. Parameters F , L, and W represent the number of flops, the number of messages communicated
between processors, and the number of words moved respectively.

3.3 The Reduced-Communication Stochastic FISTA (RC-SFISTA)

We propose RC-SFISTA that improves the performance of the FISTA algorithm as well as PN
methods on distributed platforms. RC-SFISTA is developed to maintain an efficient trade-off between
computation and communication costs in PN methods. We first introduce a novel variance-reduced
stochastic formulation of FISTA (SFISTA) to reduce its computational complexity with random
sampling. The communication cost of the formulated SFISTA is then reduced in a subsequent
step with iteration-overlapping. A Hessian-reuse method is also proposed that provides an effective
trade-off between computational complexity and communication costs for the inner solvers in SFISTA.
The extension and applicability of the proposed RC-SFISTA method for second-order optimization
methods, specifically PN methods, are elaborated at the end.

3.3.1 Reducing Computational Complexity with a Stochastic Formula-
tion

We reduce the computational complexity of FISTA with random sampling at each iteration to
significantly decrease the number of floating-point operations in the algorithm. The stochastic
variance-reduced FISTA (SFISTA) algorithm is developed for the general optimization problem
in (3.1) and afterward for the l1-regularized least-squares problem. FISTA is made stochastic by
estimating the gradient in line 5 of Algorithm 3.2 with:

∇f̂(vn) =
1

m̄

∑
i∈In
∇fi(vn) (3.8)

where In is a subset of size m̄ = bbmc from 1, ...,m chosen uniformly at random and 0 < b < 1 is the
sampling rate. Even though estimating the gradient in (3.8) reduces the computational complexity
of FISTA, the convergence rate of the stochastic method is slower due to the variance introduced by
sampling. Therefore, we use a variance-reduction method where the gradient is estimated by:

∇f̂(vn) =
1

m̄

(∑
i∈In
∇fi(vn)−

∑
i∈In
∇fi(ŵs)

)
+∇f(ŵs) (3.9)

and ŵs is the value of w in every N iteration. The last term in (3.9) computes the full gradient
using all data samples at every N iteration which reduces the variance and allows us to preserve the
convergence rate of FISTA. The SFISTA algorithm is shown in Algorithm 3.3. An approach similar
to [131] can be used to prove the convergence of SFISTA. The main theorem, proven in Appendix
A.1, which guarantees the convergence is as follows:
Theorem 1. Consider Algorithm 3.3 with a mini-batch size of m̄ and the Lipschitz constant L
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where the step size γ is a positive number such that:

γ−1 ≥ max

(
L

2
+

√
1

4
+

4L2(m− m̄)

m̄(m− 1)
, L

)
(3.10)

and

γ <

(
1−

t2N−1

t2N

)
m̄(m− 1)

8L(m− m̄)
(3.11)

then,

E[F (wN )]− F (w∗) ≤ E[F (ŵs)]− F (w∗)
t2N (1− η)N

+
C2

2γt2N (1− η)N
(3.12)

for some C ≥ 0 and 0 < η < 1− t2N−1

t2N
. E[·] denotes the expectation with respect to In and w∗ is the

optimal solution to problem (3.1). Since tN = O(N), η can be chosen to be close enough to 0 so that
SFISTA converges to the optimal solution with a rate of O(1/N2):

E[F (wN )]− F (w∗) ≤ C1

N2
(E[F (ŵs)]− F (w∗)) +

C2
2

γN2
(3.13)

for positive constants C1 and C2. Also, with additional constraints, such as strong convexity of the
objective function, a better rate for stochastic PN methods with variance-reduction is obtainable [124].

Algorithm 3.3 SFISTA
1 Input: ŵ0 = w−1 = 0 ∈ Rd, t0 = 1, γ
2 for s = 0, ... do
3 w0 = ŵs
4 for n = 1, ..., N do

5 tn =
1+

√
1+t2n−1

2

6 vn = wn−1 +
tn−1−1

tn
(wn−1 − wn−2)

7 wn = Proxγ(vn − γ∇f̂(vn))

8 ŵs+1 = wN

9 output wN

The total number of floating-point operations for the proposed stochastic formulation of FISTA
with a sampling rate of b is reduced by a factor of 1/b which reduces the computational complexity
without changing the convergence rate.

SFISTA for the l1-regularized least-squares problem. This work focuses on the problem
of l1-regularized least-squares where the gradient is computed based on (3.4) and the gradient and
the Hessian are related by (3.5). As seen in (3.9), the gradient is estimated with a random sampling
of the input data at each iteration. For l1-regularized least-squares, since the non-smooth function is
an l1-norm operator, we write the update in line 7 of Algorithm 3.3 as:

wn = Sλγ(vn − γ∇f̂(vn)) (3.14)

where Sα(β) = sign(β) max(|β| − α, 0). We also use the same symbol In to represent the sampling
matrix In = [ei1 , ei2 , ..., eim̄ ] ∈ Rm×m̄ where {ih ∈ [m]|h = 1, ..., m̄} is chosen uniformly at random
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and ei ∈ Rm is all zeros except entry i. Finally, to simplify SFISTA, we rewrite the update for vn as:

vn = wn−1 + µn(wn−1 − wn−2) (3.15)

where µn = tn−1−1
tn

. The SFISTA algorithm for l1-regularized least-squares problem is shown in
Algorithm 3.4.

Algorithm 3.4 SFISTA for L1-regularized Least-Squares Problem
1 Input: ŵ0 = w−1 = 0 ∈ Rd, t0 = 1, γ
2 for s = 0, ... do
3 w0 = ŵs
4 for n = 1, ..., N do

5 tn =
1+

√
1+t2n−1

2

6 µn =
tn−1−1

tn

7 vn = wn−1 + µn(wn−1 − wn−2)

8 gn = 1
m̄

(
XInITnXT vn −XInITny

)
9 θn = vn − γgn

10 wn = Sλγ(θn)

11 ŵs+1 = wN

12 output wN

As demonstrated, SFISTA for l1-regularized least-squares converges to the optimal solution with
a rate of O(1/N2). Therefore, it keeps the convergence rate of FISTA and reduces the number of
required floating-point operations at each iteration.

3.3.2 Reducing Communication Costs with Overlapping Iterations and
Hessian-Reuse

SFISTA solves the l1-regularized least-squares problem by iteratively computing a Hessian matrix
and thereafter updating local variables. Since SFISTA communicates data at each iteration, it
becomes communication-bound when executed on distributed memory systems for large datasets. We
reduce the communication overhead of SFISTA for the l1-regularized least-squares problem by (1)
proposing an iteration-overlapping technique that reduces latency costs in SFISTA by O(k) without
altering bandwidth costs and convergence behavior; (2) and introducing a subproblem that reduces
the total number of iterations N needed for SFISTA to convergence which results in lower bandwidth
and latency costs. The combination of these techniques, which we call the Reduced-Communication
SFISTA (RC-SFISTA) algorithm, reduces the number of iterations in the algorithm that require
data communication over the network.

Latency, arithmetic, and bandwidth costs in SFISTA. We use the model discussed in
(3.7) to analyze the performance of SFISTA. Table 3.1 summarizes the latency, bandwidth, and flop
cost of SFISTA. As demonstrated, the performance and scalability of SFISTA are limited by latency
and bandwidth costs which both increase with the number of iterations N and number of processors
P . The RC-SFISTA formulation proposed in this section reduces the latency cost by a factor of O(k)

while preserving the bandwidth cost.
Overlapping iterations in SFISTA to reduce latency costs. We propose a novel formula-

tion of SFISTA that allows for iterations of the algorithm to be overlapped to reduce communication
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Table 3.1: Latency, flops, and bandwidth costs for N iterations of RC-SFISTA and SFISTA.
Parameters d, m̄, k, and S represent # columns, # sampled rows, the iteration-overlapping parameter,
and the inner loop parameter; f is the matrix non-zero fill-in.

Algorithm Latency cost (L) Flops cost (F) Bandwidth cost (W)
SFISTA O (Nlog(P )) O

(
Nd2m̄f
P

)
O(Nd2log(P ))

RC-SFISTA O
(
Nlog(P )

k

)
O
(
Nd2m̄f
P + Sd2

)
O
(
Nd2log(P )

)

costs. Available works that overlap iterations in some optimization methods, do not support FISTA,
and reduce latency costs at the expense of increasing the amount of data moved among processors
over a network, i.e., message cost. However, our reformulation of SFISTA does not alter the message
costs and provides an O(k) reduction in latency costs of the algorithm with overlapping iterations.
By leveraging the fact that multiple instances of the Hessian could be generated at once, we unroll
k -consecutive iterations in SFISTA. The recurrence updates in SFISTA should be unrolled for k
iterations so that updates to the optimization variable can be postponed for k iterations. Lets
define ∆wn = Sλγ(θn) − wn−1. We start by changing the loop index in Algorithm 3.4 from n to
nk + j where n is the outer loop index, k is the recurrence unrolling parameter, and j is inner loop
index. Assuming we are at iteration nk + 1 and vnk, gnk, θnk and ∆wnk have been computed and if
∆vnk = vnk+1 − vnk, then the updates for the next iteration are:

∆wnk+1 =Sλγ(θnk+1)− wnk

gnk+1 =
1

m̄

[
XInk+1ITnk+1X

T (vnk + ∆vnk)−XInk+1ITnk+1y
]

θnk+1 =vnk + ∆vnk − γgnk+1

thus, for iteration nk + 2 the updates are computed as follows:

∆wnk+2 =Sλγ(θnk+2)− (wnk + ∆wnk+1)

gnk+2 =
1

m̄

[
XInk+2ITnk+2X

T (vnk + ∆vnk + ∆vnk+1)

−XInk+2ITnk+2y
]

θnk+2 =vnk + ∆vnk + ∆vnk+1 − γgnk+2

Therefore, by induction we will have

gnk+j =
1

m̄

[
XInk+jITnk+jX

T

(
vnk +

j−1∑
i=0

∆vnk+i

)
−XInk+jITnk+jy

]

θnk+j =vnk +

j−1∑
i=0

∆vnk+i − γgnk+j

∆wnk+j =Sλγ(θnk+j)− (wnk +

j−1∑
i=1

∆wnk+i) (3.16)
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and ∆vn+k is obtained via

∆vnk+j =(1 + µnk+j+1) [wnk+j − wnk+j−1]

−µnk+j [wnk+j−1 − wnk+j−2]

=(1 + µnk+j+1)∆wnk+j − µnk+j∆wnk+j−1

(3.17)

With this approach, updates are postponed for k consecutive iterations. Communication in (3.16)
is avoided by computing the following matrices for k iterations and storing them on all processors:

Hnk+j =
1

m̄
XInk+jITnk+jX

T , Rnk+j =
1

m̄
XInk+jITnk+jy (3.18)

Hn is the approximated Hessian at iteration n for the l1-regularized least-squares problem and
the processors over the network communicate only every k iterations. This will reduce the number of
messages transferred by a factor of O(k). The resulting method does not change the convergence of
SFISTA and keeps the same number of arithmetic operations.

The RC-SFISTA algorithm is shown in Algorithm 3.5. Algorithm parts that relate to implementing
iteration-overlapping are highlighted in red. As shown, the number of iterations in line 2 is reduced
by a factor of k. The inner loop in line 3 computes local matrices H and R and the inner loop in line
7 updates local variables without communication. Table 3.1 shows the latency, bandwidth, and flop
cost of RC-SFISTA. With iteration-overlapping, the latency of SFISTA is reduced by a factor of k
while bandwidth costs do not change which can potentially lead to a k-fold speedup.

Algorithm 3.5 RC-SFISTA for the L1-regularized Least-Squares Problem
1 Input: X ∈ Rd×m, y ∈ Rm, w0 = w−1 = 0 ∈ Rd, k ∈ N, b ∈ (0, 1], t0 = 1, m̄ = bbmc,γ
2 for n = 0, ..., N

k
do

3 for j = 1, ..., k do
4 Generate Ink+j = [ei1 , ei2 , ..., eim̄ ] ∈ Rm×m̄ where {ih ∈ [m]|h = 1, ..., m̄} is chosen uniformly at

random
5 Hnk+j = 1

m̄
XInk+jI

T
nk+jX

T , Rnk+j = 1
m̄
XInk+jI

T
nk+jy

6 set G = [Hnk+1|Hnk+2|...|H(n+1)k] and R = [Rnk+1|Rnk+2|...|R(n+1)k] and send them to all processors.
7 for j = 1, ..., k do
8 Hnk+j and Rnk+j are d× d and d× 1 blocks of G and R respectively
9 for s = 1, ..., S do

10 update ∆vsnk+j−1 based on (3.20)
11 update gsnk+j based on (3.21)
12 update θsnk+j based on (3.22)
13 update ∆wsnk+j based on (3.23)
14 wsnk+j = ∆wsnk+j + ws−1

nk+j

15 wnk+j = wSnk+j

16 output wN

The Hessian-reuse method. We propose a novel technique called Hessian-reuse to further
reduce the number of outer iterations in RC-SFISTA. The objective of Hessian-reuse, which solves a
local subproblem, is to find an efficient trade-off between data communication and local operations,
operations that are computed on the same processor and do not lead to inter-processor data
communication. By solving a subproblem local to each processor, shown in lines 9-15 of Algorithm
3.5, we expect the overall problem to converge faster, i.e., the number of iterations corresponding to
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the for-loop in line 2 which require inter-processor data communication to reduce. The following
discusses the Hessian-reuse method and analyzes why a better convergence is expected with this
formulation.

Every update in SFISTA requires matrices Hn and Rn which can be reused repeatedly to update
local variables. Reusing the Hessian could contribute more to minimizing the objective function and
in particular, it will reduce the total number of iterations N in SFISTA. Since both latency and
bandwidth costs increase with the number of iterations, this approach can reduce communication
overhead. We first consider the subproblem in PN methods which is provided by:

zk = argmin
y

1

2
(y − wn)THn(y − wn) +∇f(wn)T (y − wn) + g(y)

= argmin
y

Φ(y) + g(y) (3.19)

where Φ(y) is the smooth segment of the objective function. To solve this minimization problem,
RC-SFISTA requires the gradient of the smooth segment of this objective problem given by ∇Φ(y) =

Hny −Rn which has the same equation for the gradient in the l1-regularized least-squares problem
in (3.5). This means applying SFISTA to solve the subproblem at (3.19) is identical to applying the
SFISTA recurrence updates while using the same Hn and Rn to compute the gradient.

While we apply iteration-overlapping, the single update rules for SFISTA (lines 6-10 Algorithm
3.4) are changed into a new inner loop update. In other words, the update rules are changed to:

∆vsnk+j =(1 + µs+1)∆wsnk+j − µs∆wsnk+j−1 (3.20)

gsnk+j =Hnk+j

(
vnk +

j−1∑
i=0

∆vsnk+i

)
−Rnk+j (3.21)

θsnk+j =vnk +

j−1∑
i=0

∆vsnk+i − γgsnk+j (3.22)

∆wsnk+j =Sλγ(θsnk+j)− (wnk +

j−1∑
i=1

∆wsnk+i) (3.23)

where ∆wsn = Sλγ(θsn)−wsn−1 and ∆w1
n = ∆wn. Using the same Hessian for multiple iterations could

be seen as sampling the same data points from matrices X and y. This is doable as long as inner loop
parameter S is small compared to the total iterations N . Otherwise, the subproblem is over-solved
and executes redundant flops which could increase the overall runtime of the algorithm. The applied
Hessian-reuse method is shown in blue in Algorithm 3.5. The inner loop at Line 9 updates the local
variables for S iterations redundantly on all processors. The parameter S is tuned to find an efficient
trade-off between computation and communication.

As discussed, with iteration-overlapping, RC-SFISTA reduces the latency costs by a factor of
O(k) without increasing bandwidth costs. With the Hessian-reuse method, RC-SFISTA increases the
algorithm’s computation complexity to further reduce communication rounds. Thus, the parameter S
should be tuned to find an efficient trade-off between computation complexity and data communication.
The algorithm’s cost is shown in Table 3.1.
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Figure 3.1: A high-level description of RC-SFISTA implemented on a distributed memory system of
P processors.

3.3.3 Extension to Proximal Newton Methods

RC-SFISTA could be used both as an inner solver inside PN methods or as an independent solver
for the l1-regularized least-squares problem. RC-SFISTA approximates the Hessian with random
sampling which follows the same logic in line 3 of Algorithm 3.1. Then both methods minimize a
quadratic subproblem that follows (3.19). Therefore, RC-SFISTA could also be used as an inner solver
for PN methods. In this case, the iteration-overlapping approach reduces latency costs by a factor of
O(k) and if used independently it benefits from both iteration-overlapping and Hessian-reuse.

3.4 Implementation on Distributed Architectures

This section presents the implementation of RC-SFISTA on a distributed architecture. The theoretical
upper bounds for parameters related to iteration overlapping and the Hessian-reuse implementations
are also provided based on machine specification.

3.4.1 Distributed Implementation

An overview of implementing RC-SFISTA on distributed architectures is shown in Figure 3.1. We
assume that the data matrix X is sparse with “fdm" non-zeros that are uniformly distributed,
where 0 < f < 1 represents the percentage of non-zero fill-in in the data matrix X. Also, X and
y are partitioned column- and row-wise, respectively, on P processors. In stage A, every processor
randomly samples columns from X and the corresponding rows from y for k iterations. Using the
sampled data, k instances of matrices H and R are computed locally on each processor in stage
B. Processor contributions are combined using MPI_Allreduce during stage C. Since the result
from MPI_Allreduce is stored on all processors, RC-SFISTA will compute k iterations of solution
updates without any communication between processors and each processor solves k subproblems for
S iterations at stage D. This process is repeated until a stopping criterion is met.

3.4.2 RC-SFISTA Parameter Bounds

The iteration-overlapping parameter k significantly improves the performance of RC-SFISTA if
latency costs dominate the overall runtime of the algorithm. Also, the inner loop parameter S reduces



28 CHAPTER 3. REDUCING COMMUNICATION IN PROXIMAL NEWTON METHODS

the total number of iterations in RC-SFISTA at the expense of more flops, often leading to better
performance. In this section, the bounds for parameters k and S are derived based on algorithm and
machine specifications.

RC-SFISTA runtime. We use the model in (3.7) to analyze the performance of RC-SFISTA.
The total number of flops for RC-SFISTA is dominated by the matrix-matrix multiplication in line 5
and the Hessian-reuse in lines 10-14 in Algorithm 3.5. Also, RC-SFISTA only communicates a matrix
of size d2 every k iterations in line 6 requiring O(d2k) words to be moved between processors with N

k

messages. Thus, the total runtime of Algorithm 3.5 is:

T = γ

(
Nd2m̄f

P
+ Sd2

)
+ α

(
Nlog(P )

k

)
+ β

(
Nd2log(P )

)
(3.24)

The iteration-overlapping parameter k. The theoretical upper bound for k depends on
machine specifications and dataset dimensions. Since k only appears in latency costs in (3.24),
increasing k will always lead to a lower running time. However, the performance obtained from
iteration-overlapping is more significant if the latency cost dominates the total runtime. By considering
latency and bandwidth, the following upper bound is achieved:

k ≤ α

βd2
(3.25)

This upper bound shows that RC-SFISTA leads to better performance on distributed platforms
with a higher rate of latency to bandwidth ratio (αβ ). Comparing the first two terms in (3.24), i.e.,
flops and latency costs, we have:

k ≤ αNPlog(P )

γ[Nd2m̄f + Sd2P ]
. (3.26)

Equation 3.26 shows that for matrices with a lower sparsity degree f , k can be larger. In particular,
if the dataset is very sparse (f ∼ 0) we can write:

kS ≤ αNlog(P )

γd2
. (3.27)

The upper bound in (3.27) provides a trade-off between the computational complexity and
communication cost of RC-SFISTA where increasing the value of the iteration-overlapping parameter
k results in a tighter bound for S.

The inner loop parameter S. Equation (3.27) shows that for higher values of k, a lower value
for S is expected. Specifically, if the upper bound (3.25) is used, then:

S ≤ βNlog(P )

γ
. (3.28)

Equation (3.28) states that the upper bound for S depends on machine-specific parameters β and
γ. Therefore, RC-SFISTA achieves a better performance on distributed architectures with a higher
ratio of βγ .
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3.5 Results

This section presents the experimental setup and performance results. We show that k does not
change the convergence behavior of SFISTA. Experimental results are provided that show the
inner loop parameter S improves the convergence of RC-SFISTA. Afterward, speedup results of the
proposed method as an independent solver and inner solver for PN methods are discussed. Finally,
we demonstrate that RC-SFISTA performs better than the state-of-the-art framework ProxCoCoA
up to 12×.

Table 3.2: The datasets for experimental study.

Dataset Row num-
bers

Column num-
bers

Percentage
of nnz (f)

Size
(nnz)

abalone 4177 8 100% 258.7KB
SUSY 5M 18 25.39% 2.47GB
covtype 581,012 54 22.12% 71.2MB
mnist 60,000 780 19.22% 114.8MB
epsilon 400,000 2000 100% 12.16GB
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Figure 3.2: Convergence of RC-SFISTA for different b and k.

3.5.1 Experimental Setup

Table 3.2 shows the datasets used for our experiments [132]. The datasets are from dense and sparse
machine learning applications and vary in size and sparsity [132]. RC-SFISTA is implemented in
C/C++ using Intel MKL 11.1 for (sparse/dense) BLAS routines and MPI 2.1 for parallel processing.
We use the compressed sparse row format to store the data of sparse datasets; abalone is stored as
dense. Our experiments are conducted on the XSEDE Comet CPU nodes [133]. Because of resource
constraints on Comet, for experiments with less than 64 nodes, we use one processor per node, while
for larger runs multiple processors per node were used. For example, to execute RC-SFISTA on 256
processors, we use 64 nodes and 4 processors per node.
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Regularization parameter λ. The parameter λ should be chosen based on the prediction accuracy
of the dataset and can affect convergence rates. We tune λ so that our experiments have reasonable
running time. The final tuned value for λ is 0.0001 for epsilon and 0.1 for all other benchmarks.

Stopping criteria. The relative objective error en is used as the stopping criteria where en =

|F (wn)−F (w∗)
F (w∗) |. Algorithm 3.5 returns when the relative objective error achieves a value less than

a user-specified tolerance tol which here is chosen to provide a reasonable execution time. The
optimal solution, w∗ is computed using Templates for First-Order Conic Solvers (TFOCS) which
is competitive with state-of-the-art methods [134]. TFOCS uses a first-order method where the
tolerance for its stopping criteria is 10−8.
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Figure 3.3: Convergence of RC-SFISTA for different values of inner loop parameter S.

3.5.2 Convergence Results

This section shows the effect of the sampling rate b on the convergence of SFISTA where the
algorithm’s computation cost is significantly reduced with smaller values of b. We also demonstrate
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the effect of parameters k and S on convergence rate and show that RC-SFISTA is numerically
stable.

The effect of b on convergence. The relative objective error for RC-SFISTA for different values of
sampling rate b is shown in Figure 3.2 (a) while setting k and S to 1. The convergence rates are
almost identical compared to FISTA. Smaller values for b result in a smaller mini-batch size m̄ and,
therefore, a lower computation cost.

The effect of k on convergence. The iteration-overlapping parameter k does not change the
convergence of RC-SFISTA since it is the same as SFISTA in exact arithmetic. For a fair comparison,
random sampling is fixed by using the same random generator seed, thus, in both scenarios, the same
data points are used in the algorithm. The convergence properties of RC-SFISTA for different values
of k are shown in Figure 3.2 (b). The experiments demonstrate that changing k does not affect the
stability and relative objective error. We tested the convergence rate and stability behavior of the
algorithm for up to k = 128 and a similar trend was observed.

1 2 4 8 16 32
k

1

1.5

2

2.5

3

3.5

4

S
p
e
e
d
u
p

P=256

P=512

P=128

P=64

(a) covtype

1 2 4 8 16 32

k

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

S
p
e
e
d
u
p

P=64

P=128

P=256

P=512

P=1024

(b) mnist

1 2 4 8 16 32
k

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

S
p
e
e
d
u
p

P=64

P=128

P=256

P=512

P=1024

(c) SUSY

1 2 4 8 16 32

k

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

S
p
e
e
d
u
p

P=64

P=128

P=256

P=512

(d) epsilon

Figure 3.4: Speedup results for RC-SFISTA compared to SFISTA for different values of the iteration-
overlapping parameter k.
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The effect of S on convergence. The convergence behavior of RC-SFISTA for different values
of S is shown in Figure 3.3. Increasing S reduces the total number of iterations in RC-SFISTA to
reach the optimal solution. As seen in the figure, even for small values of S, the improvement in
convergence is noticeable. However, according to (3.12), larger values of S degrade the convergence
behavior of RC-SFISTA which can also be seen in the figure for S equal to 10 for all benchmarks.

3.5.3 Speedup Comparison

This section shows the speedup for RC-SFISTA compared to SFISTA for different values of k and
S. The tolerance parameter tol is set to 0.01 in all the experiments. We show that increasing k
reduces latency costs by a factor of k and improves the performance of RC-SFISTA on a distributed
architecture. We also provide speedup results for the inner loop parameter S and show the trade-off
between the computation cost of RC-SFISTA and data communication.

The effect of parameter k on speedup. The speedup of RC-SFISTA compared to SFISTA for a
different number of processors (P) and different values of k are shown in Figure 3.4. Parameter S is
set to one to only analyze the effect of k on the total runtime of the algorithm. As shown in the
figure, increasing k results in up to 4× speedup for all datasets by reducing latency costs by a factor
of k. However, for larger values of k, the performance of RC-SFISTA degrades for the dataset epsilon
since the computation cost dominates the overall running time of the algorithm.

The value of k depends on machine specifications and the dataset size. For example, the machine
parameters α and β for the XSEDE Comet nodes used in the experiments are 10−6 and 1.42× 10−10,
thus, the theoretical upper bound (3.25) for the covtype dataset is 2. However, according to (3.24)
all values of k reduce the total runtime of the algorithm, thus, RC-SFISTA continues to scale even
for larger values of k.
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Figure 3.5: Speedup of RC-SFISTA vs. SFISTA for different S.

The effect of S on speedup. The speedup results of RC-SFISTA compared to SFISTA on 256
processors for different values of S are shown in Figure 3.5. The value of parameter k is tuned
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for all benchmarks. Increasing S will result in better convergence properties by reducing the total
number of iterations. S is increased until an efficient trade-off between computation cost and data
communication is reached. As shown in Figure 3.5, for larger values of S, the cost of redundant
computation overwhelms the total cost of the algorithm, and the speedup decreases. For example,
RC-SFISTA shows a speedup of 3× compared to SFISTA for the mnist dataset when S = 5, while
it achieves a speedup of 2× when the inner loop parameter increases to 10. The upper bound for
parameter S depends on both the architecture and the algorithm iterations N. Since on XSEDE
Comet nodes the value of γ is 4 × 10−10, based on the upper bound in (3.27) with values k = 1,
P = 256, and N = 200 for the mnist dataset we have S < 7. As shown in Figure 3.5, S = 5 gives the
best speedup for mnist on 256 processors.
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Figure 3.6: Relative objective error of RC-SFISTA compared to ProxCoCoA on 256 processors.
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3.5.4 Comparison to ProxCoCoA

In this section, we compare RC-SFISTA with ProxCoCoA, a state-of-the-art framework for solving
large-scale l1-regularized least-squares problems. Since ProxCoCoA is optimized and implemented in
Apache Spark’s MLlib we also implemented RC-SFISTA using Apache Spark MLlib [135]. When
analyzing the performance of the algorithms, we measure the relative objective error in terms of
wall-clock time. For all the experiments, the value of S is tuned for the best performance. The results
with 256 workers on 256 processors are shown in Figure 3.6. ProxCoCoA has a slow convergence
for all datasets, however, RC-SFISTA converges faster and reaches a lower relative objective error
compared to ProxCoCoA. Table 3.3 summarizes the speedup of RC-SFISTA compared to ProxCoCoA
on 256 workers. The parameter tol is set to 0.01 for all benchmarks and the sampling rate b is set to
1% for RC-SFISTA.

Dataset SUSY covtype mnist epsilon
Speedup 1.57× 4.74× 12.15× 3.53×

Table 3.3: Speedup of RC-SFISTA compared to ProxCoCoA.

3.5.5 Speedup Results for PN Methods

This section shows the results for RC-SFISTA used as an inner solver in PN methods (Algorithm
3.1). The speedups are normalized over the PN method with FISTA as an inner solver. The Hessian
approximation for both algorithms is obtained using uniform sampling by initializing all processors
with the same seed for the random number generator. The parameter S for RC-SFISTA and the
number of inner solver iterations for PN methods are tuned for best performance. The speedup
results on 512 processors are shown in Figure 3.7. As demonstrated, as long as the latency cost
dominates the communication cost, increasing k results in a better speedup.
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Figure 3.7: Speedup results for PN method with RC-SFISTA as inner solver compared to FISTA
used as inner solver.
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3.6 Conclusion

The performance of proximal Newton methods used for solving l1-regularized least-squares problems
is limited by the performance of the inner solver used in these algorithms. PN methods do not scale
well on distributed platforms when operating on large datasets. We propose a novel inner solver,
RC-SFISTA, that leverages randomized sampling to overlap iterations and reduce latency costs by a
factor of k. The RC-SFSITA algorithm keeps the convergence behavior and preserves the overall
bandwidth cost. The performance of the inner solver is further improved by solving local subproblems
on each processor at cost of more floating-point operations. Our experiments show that RC-SFISTA
provides up to 12× speedup compared to SFISTA and the state-of-the-art method ProxCoCoA for
the tested datasets on distributed platforms.

Limitations. In RC-SFISTA, we assume that all processors start and finish their tasks concur-
rently, which does not hold for systems with processors that have uncertain response times. Hence,
the provided upper bounds can be improved by considering this uncertainty. Moreover, for datasets
with many features, the upper bound for overlapping parameter k becomes smaller as the dimension
increases. However, the loop parameter S is still tunable and can result in an improved performance.
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Chapter 4

Asynchronous Quasi-Newton Method
on Distributed Memory Systems

The distributed asynchronous quasi-Newton method presented in this chapter was developed by co-
authors Konstantin Mischenko, Aryan Mokhtari, Maryam Mehri Dehnavi, and Mert Gurbuzbalaban.
This work was published under the title "DAve-QN: A Distributed Averaged Quasi-Newton Method
with Local Superlinear Convergence Rate" at the AISTATS 2020 conference [136].

In this chapter, we develop a quasi-Newton algorithm for solving the empirical risk minimization
problem, which reduces the communication cost on distributed memory systems by using asynchronous
communications. Unlike Chapter 3, in which we reduced the communication cost of quasi-Newton
methods using infrequent synchronization, the proposed method relaxes the communication constraints
and allows the processors for delayed updates. While the communication delay can potentially degrade
the convergence rate, we show that as long as the delay is bounded, our method enjoys the local
superlinear convergence rate. The proposed method is based on an asynchronous averaging scheme
of decision vectors and gradients in a way to effectively capture the local Hessian information of
the objective function. Our proposed algorithm, Distributed Averaged Quasi-Newton (DAve-QN),
can be implemented in asynchronous master/worker distributed settings; allowing better scalability
properties with parallelization while being robust to delays of the workers. The contributions of this
chapter are:

• The first communication-efficient asynchronous optimization algorithm that can achieve super-
linear convergence for solving the empirical risk minimization problem under the master/worker
communication model which only requires sharing vectors of size O(p) where p is the size of
the optimization variable.

• Our theory supports asynchronous computations subject to both bounded delays and unbounded
delays with a bounded time-average. We provide numerical experiments that show significant
improvement compared to state-of-the-art distributed algorithms.

37
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4.1 Introduction

In this work, we focus on distributed algorithms for empirical risk minimization problems. The setting
is as follows: Given n machines, each machine has access to mi samples {ξi,j}mij=1 for i = 1, 2, . . . , n.
The samples ξi,j are random variables supported on a set P ⊂ Rd. Each machine has a loss function
that is averaged over the local dataset:

fi(x) =
1

mi

mi∑
j=1

φ(x, ξi,j) +
λ

2
‖x‖22

where the function φ : Rp×Rd → R is convex in x for each ξ ∈ Rd fixed and λ ≥ 0 is a regularization
parameter. The goal is to develop communication-efficient distributed algorithms to minimize the
overall empirical loss defined by

x∗ := argmin
x∈Rp

f(x) := argmin
x∈Rp

1

n

n∑
i=1

fi(x). (4.1)

The communication model we consider is the centralized communication model, also known
as the master/worker model ( [137]). In this model, the master machine possesses a copy of the
global decision variable x which is shared with the worker machines. Each worker performs local
computations on its local data which is then communicated to the master node to update the
decision variable. Communications can be synchronous or asynchronous, resulting in different types
of optimization algorithms and convergence guarantees. The merit of synchronization is that it
prevents workers from using obsolete information and, thereby, from submitting a low-quality update
of parameters to the master. However, all the nodes have to wait for the slowest worker, which
leads to unnecessary overheads. Asynchronous algorithms do not suffer from this issue, maximizing
the efficiency of the workers while minimizing the system overheads. Asynchronous algorithms are
particularly preferable over networks with heterogeneous machines with different memory capacities,
work overloads, and processing capabilities.

There has been a number of distributed algorithms suggested in the literature to solve the empirical
risk minimization problem (4.1) based on primal first-order methods ( [138–140]), their accelerated or
variance-reduced versions ( [141–145]), lock-free parallel methods ( [62,146]), coordinate descent-based
approaches ( [137,147–149]), dual methods ( [148,150]), primal-dual methods ( [137,149,151–153]),
distributed ADMM-like methods ( [154]) as well as quasi-Newton approaches ( [155,156]), inexact
second-order methods ( [9, 157–161]) and general-purpose frameworks for distributed computing
environments ( [151, 152]) both in the asynchronous and synchronous setting. The efficiency of
these algorithms is typically measured by the communication complexity which is defined as the
equivalent number of vectors in Rp sent or received across all the machines until the optimization
algorithm converges to an ε-neighborhood of the optimum value. Lower bounds on the communication
complexity have been derived by [162] as well as some linearly convergent algorithms achieving
these lower bounds ( [141, 159]). However, in an analogy to the lower bounds obtained by [163]
for first-order centralized algorithms, the lower bounds for the communication complexity are only
effective if the dimension p of the problem is allowed to be larger than the number of iterations. This
assumption is perhaps reasonable for very large-scale problems where p can be billions, however, it is
conservative for moderate to large-scale problems where p is not as large.
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Most existing state-of-the-art communication-efficient algorithms for strongly convex problems
share vectors of size O(p) at every iteration while having linear convergence guarantees. In this
work, we propose the first communication-efficient asynchronous optimization algorithm that can
achieve local superlinear convergence for solving the empirical risk minimization problem under
the master/worker communication model. Our algorithm is communication-efficient in the sense
that it also shares vectors of size O(p). Our theory supports asynchronous computations subject to
both bounded delays and unbounded delays with a bounded time-average. We provide numerical
experiments that illustrate our theory and practical performance. Our proposed algorithm, Distributed
Averaged Quasi-Newton (DAve-QN) is inspired by the Incremental Quasi-Newton (IQN) method
proposed by [164] which is a deterministic incremental algorithm based on the BFGS method. In
contrast to the IQN method, which is designed for centralized computation, our proposed scheme
can be implemented in asynchronous master/worker distributed settings; allowing better scalability
properties with parallelization, while being robust to delays of the workers.

Related work. Although the setup that we consider here is an asynchronous master/worker
distributed setting, it also relates to incremental aggregated algorithms ( [139,165–170]), as at each
iteration the information corresponding to one of the machines, i.e., functions, is evaluated while
the variable is updated by aggregating the most recent information of all the machines. In fact, our
method is inspired by an incremental quasi-Newton method proposed by [164] and a delay-tolerant
method by [58]. However, in the IQN method, the update at iteration t is a function of the last n
iterates {xt−1, . . . , xt−n}, while in our asynchronous distributed scheme the updates are performed
on delayed iterates {xt−dt1−1, . . . , xt−d

t
n−n}. This major difference between the updates of these two

algorithms requires a challenging different analysis. Further, our algorithm can be considered as
an asynchronous distributed variant of traditional quasi-Newton methods that have been heavily
studied in the numerical optimization community ( [171–174]). Also, there have been some works on
decentralized variants of quasi-Newton methods for consensus optimization where communications
are performed over a fixed arbitrary graph where a master node is impractical or does not exist, this
setup is also known as the multi-agent setting ( [56,67]). The work proposed by [155] introduces a
linearly convergent decentralized quasi-Newton method for decentralized settings. [56] propose an
asynchronous Newton-based approach that solves a penalized version of the problem whose solution
lies in a O(α) neighborhood of the optimal solution where α is a penalty parameter. Their algorithm
enjoys local superlinear convergence guarantees in this neighborhood. We emphasize that our setup
is different in the sense that we have a star network topology obeying the master/slave hierarchy.
Furthermore, our asymptotic convergence results are stronger than those available in the multi-agent
setting as we establish a superlinear convergence rate for the proposed method to the global minimum
x∗ of the problem (4.1). There has also been recent progress in solving distributed non-convex
problems with second-order methods. Among these, the most relevant to our work are [61] which
proposes an asynchronous-parallel stochastic L-BFGS method, and the DINGO method ( [175]).
DINGO is a Newton-type method that optimizes the gradient’s norm as a surrogate function with
linear convergence guarantees to a local minimum for non-convex objectives that satisfy an invexity
property.

Outline. In Section 4.2.1, we review the update of the BFGS algorithm that we build on our
distributed quasi-Newton algorithm. We formally present our proposed DAve-QN algorithm in
Section 4.2.2. We then provide our theoretical convergence results for the proposed DAve-QN method
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in Section 4.3. Numerical results are presented in Section 4.4. Finally, we give a summary of our
results and discuss future work in Section 5.

4.2 Algorithm

4.2.1 Preliminaries: The BFGS Algorithm

The update of the BFGS algorithm for minimizing a convex smooth function f : Rp → R is given by

xt+1 = xt − ηt(Bt+1)−1∇f(xt), (4.2)

where Bt+1 is an estimate of the Hessian ∇2f(xt) at time t and ηt is the step size (see e.g., [176]).
The idea behind the BFGS (and, more generally, behind quasi-Newton) methods is to compute
the Hessian approximation Bt+1 using only first-order information. Like Newton’s methods, BFGS
methods work with step size ηt = 1 when the iterates are close to the optimum. However, at the
initial stages of the algorithm, the step size is typically determined by a line search for avoiding the
method to diverge.

A common rule for the Hessian approximation is to choose it to satisfy the secant condition
Bt+1st+1 = yt+1,where st+1 = xt − xt−1, and yt+1 = ∇f(xt) − ∇f(xt−1) are called the variable
variation and gradient variation vectors, respectively. The Hessian approximation update of BFGS
which satisfies the secant condition can be written as a rank-two update

Bt+1 = Bt + Ut+1 + Vt+1, Ut+1 =
yt+1(yt+1)T

(yt+1)T st+1
, Vt+1 = −Btst+1(st+1)TBt

(st+1)TBtst+1
. (4.3)

Note that both matrices Ut and Vt are rank-one. Therefore, the update (4.3) is rank two. Owing to
this property, the inverse of the Hessian approximation Bt+1 can be computed at a low cost of O(p2)

arithmetic iterations based on the Sherman-Morrison-Woodbury formula, instead of computing the
inverse matrix directly with a complexity of O(p3). For a strongly convex function f with the global
minimum x∗, a classical convergence result for the BFGS method shows that the iterates generated by
BFGS are superlinearly convergent [177], i.e., limt→∞

‖xt+1−x∗‖
‖xt−x∗‖ = 0. There are also limited-memory

BFGS (L-BFGS) methods that require less memory (O(p)) at the expense of having a linear (but
not superlinear) convergence [176]. Our main goal here is to design a BFGS-type method that can
solve problem (4.1) efficiently with superlinear convergence in an asynchronous setting under the
master/slave communication model. We introduce our proposed algorithm in the following section.

4.2.2 A Distributed Averaged Quasi-Newton Method (DAve-QN)

In this section, we introduce a BFGS-type method that can be implemented in a distributed setting
(master/slave) without any central coordination between the nodes, i.e., asynchronously. To do so,
we consider a setting where n worker nodes (machines) are connected to a master node. Each worker
node i has access to a component of the global objective function, i.e., node i has access only to the
function fi. The decision variable stored at the master node is denoted by xt at time t. At each
moment t, dti denotes the delay in communication with the i-th worker, i.e., the last exchange with
this worker was at time t− dti. For convenience, if the last communication was performed exactly at
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<latexit sha1_base64="Q6kZdZrQS8yjuP4J/1Q7fU0uCRI=">AAACOHicbVC7SgNBFJ31GeNr1dJmYgxYhV0RTBm0sYxgHpCsYXZyNxky+2BmVrMs+wN+ja35Ezs7sbUXnDwKk3jgwuGc++AeN+JMKst6N9bWNza3tnM7+d29/YND8+i4IcNYUKjTkIei5RIJnAVQV0xxaEUCiO9yaLrD24nffAIhWRg8qCQCxyf9gHmMEqWlrnmedqZLUgG9QsUqJMB5+Jzhjk/UwPXSUfaosq5ZtMrWFHiV2HNSRHPUuuZPpxfS2IdAUU6kbNtWpJyUCMUohyzfiSVEhA5JH9LR9P6i1hckGjA6yvKlP3Jb04D4IJ10NoNLWulhLxS6AoWn6sIi4kuZ+K7unPwjl72J+J/XjpVXcVIWRLGCgM4OeTHHKsSTFHGPCaCKJ5oQKph+C9MBEYQqnXVe52Uvp7NKGpdl2yrb91fF6s08uRw6RWfoAtnoGlXRHaqhOqLoBb2iNzQ2xsaH8Wl8zVrXjPnMCVqA8f0Ly1WuMQ==</latexit><latexit sha1_base64="Q6kZdZrQS8yjuP4J/1Q7fU0uCRI=">AAACOHicbVC7SgNBFJ31GeNr1dJmYgxYhV0RTBm0sYxgHpCsYXZyNxky+2BmVrMs+wN+ja35Ezs7sbUXnDwKk3jgwuGc++AeN+JMKst6N9bWNza3tnM7+d29/YND8+i4IcNYUKjTkIei5RIJnAVQV0xxaEUCiO9yaLrD24nffAIhWRg8qCQCxyf9gHmMEqWlrnmedqZLUgG9QsUqJMB5+Jzhjk/UwPXSUfaosq5ZtMrWFHiV2HNSRHPUuuZPpxfS2IdAUU6kbNtWpJyUCMUohyzfiSVEhA5JH9LR9P6i1hckGjA6yvKlP3Jb04D4IJ10NoNLWulhLxS6AoWn6sIi4kuZ+K7unPwjl72J+J/XjpVXcVIWRLGCgM4OeTHHKsSTFHGPCaCKJ5oQKph+C9MBEYQqnXVe52Uvp7NKGpdl2yrb91fF6s08uRw6RWfoAtnoGlXRHaqhOqLoBb2iNzQ2xsaH8Wl8zVrXjPnMCVqA8f0Ly1WuMQ==</latexit><latexit sha1_base64="Q6kZdZrQS8yjuP4J/1Q7fU0uCRI=">AAACOHicbVC7SgNBFJ31GeNr1dJmYgxYhV0RTBm0sYxgHpCsYXZyNxky+2BmVrMs+wN+ja35Ezs7sbUXnDwKk3jgwuGc++AeN+JMKst6N9bWNza3tnM7+d29/YND8+i4IcNYUKjTkIei5RIJnAVQV0xxaEUCiO9yaLrD24nffAIhWRg8qCQCxyf9gHmMEqWlrnmedqZLUgG9QsUqJMB5+Jzhjk/UwPXSUfaosq5ZtMrWFHiV2HNSRHPUuuZPpxfS2IdAUU6kbNtWpJyUCMUohyzfiSVEhA5JH9LR9P6i1hckGjA6yvKlP3Jb04D4IJ10NoNLWulhLxS6AoWn6sIi4kuZ+K7unPwjl72J+J/XjpVXcVIWRLGCgM4OeTHHKsSTFHGPCaCKJ5oQKph+C9MBEYQqnXVe52Uvp7NKGpdl2yrb91fF6s08uRw6RWfoAtnoGlXRHaqhOqLoBb2iNzQ2xsaH8Wl8zVrXjPnMCVqA8f0Ly1WuMQ==</latexit><latexit sha1_base64="Q6kZdZrQS8yjuP4J/1Q7fU0uCRI=">AAACOHicbVC7SgNBFJ31GeNr1dJmYgxYhV0RTBm0sYxgHpCsYXZyNxky+2BmVrMs+wN+ja35Ezs7sbUXnDwKk3jgwuGc++AeN+JMKst6N9bWNza3tnM7+d29/YND8+i4IcNYUKjTkIei5RIJnAVQV0xxaEUCiO9yaLrD24nffAIhWRg8qCQCxyf9gHmMEqWlrnmedqZLUgG9QsUqJMB5+Jzhjk/UwPXSUfaosq5ZtMrWFHiV2HNSRHPUuuZPpxfS2IdAUU6kbNtWpJyUCMUohyzfiSVEhA5JH9LR9P6i1hckGjA6yvKlP3Jb04D4IJ10NoNLWulhLxS6AoWn6sIi4kuZ+K7unPwjl72J+J/XjpVXcVIWRLGCgM4OeTHHKsSTFHGPCaCKJ5oQKph+C9MBEYQqnXVe52Uvp7NKGpdl2yrb91fF6s08uRw6RWfoAtnoGlXRHaqhOqLoBb2iNzQ2xsaH8Wl8zVrXjPnMCVqA8f0Ly1WuMQ==</latexit> �u,y,q, ↵, �

<latexit sha1_base64="aTt/sYXcQ/NpnhMHgndktsPB8gY="></latexit><latexit sha1_base64="aTt/sYXcQ/NpnhMHgndktsPB8gY="></latexit><latexit sha1_base64="aTt/sYXcQ/NpnhMHgndktsPB8gY=">AAACZHicbZHfSxtBEMc3V2s1tRoVnwRZG4Q+lHAnBfso6oOPERoVciHMbuaSxb0f7s4Vw3H/lv9LwVfzXwjuJaEk6sCyH77zY2dmRaaVJd//V/M+rXxe/bK2Xv+68W1zq7G9c23T3EjsyFSn5laARa0S7JAijbeZQYiFxhtxd175b/6isSpN/tA4w14Mw0RFSgI5qd9oF+G0SCF0jocn/qHQIO9KHl6gJuBhDDQSUZGXP//zeIHvKwadjcDdAgnKfqPpt/yp8fcQzKHJ5tbuN17CQSrzGBOSGqztBn5GvQIMKamxrIe5xcz1BEMsHqa9LmtDA9lIyYeyfrQgdx0mEKPtFbMcfuSUAY9S405CfKouFYLY2nEsXGQ1nH3rq8SPfN2cot+9QiVZTpjI2UNRrjmlvNo4HyiDkvTYAUij3FhcjsCAJPcvdbev4O123sP1cSvwW8HVr+bp2Xxza2yffWc/WMBO2Cm7ZG3WYZI9sif2zCa1ibfh7Xp7s1CvNs/ZZUvmHbwCWbC7Sw==</latexit><latexit sha1_base64="aTt/sYXcQ/NpnhMHgndktsPB8gY="></latexit>

z
t�dt

1
1

<latexit sha1_base64="VffIXyXw8QC5b7zkHZNhbeQUseo=">AAACKnicbVDLSsNAFJ34rPEVFdy4CZaCG0sigi6LblxWsA9oY5hMJ+3QyYOZG2mN+Rm39mvcFbf+huCkzcK2HhjmcM69d+YeL+ZMgmVNtbX1jc2t7dKOvru3f3BoHB03ZZQIQhsk4pFoe1hSzkLaAAactmNBceBx2vKG97nfeqFCsih8gnFMnQD3Q+YzgkFJrnHaDTAMPD99zVz7OYXLnrogc42yVbVmMFeJXZAyKlB3jZ9uLyJJQEMgHEvZsa0YnBQLYITTTO8mksaYDHGfpqPZtxe1vsDxgJFRplf+yB1FQxxQ6aTzHrOilJ7pR0KdEMyZujAIB1KOA09V5ovJZS8X//M6Cfi3TsrCOAEakvlDfsJNiMw8N7PHBCXAx4pgIphayyQDLDABla6u8rKX01klzauqbVXtx+ty7a5IroTO0Dm6QDa6QTX0gOqogQh6Q+/oA020ifapTbWveemaVvScoAVo37/NzagW</latexit><latexit sha1_base64="VffIXyXw8QC5b7zkHZNhbeQUseo=">AAACKnicbVDLSsNAFJ34rPEVFdy4CZaCG0sigi6LblxWsA9oY5hMJ+3QyYOZG2mN+Rm39mvcFbf+huCkzcK2HhjmcM69d+YeL+ZMgmVNtbX1jc2t7dKOvru3f3BoHB03ZZQIQhsk4pFoe1hSzkLaAAactmNBceBx2vKG97nfeqFCsih8gnFMnQD3Q+YzgkFJrnHaDTAMPD99zVz7OYXLnrogc42yVbVmMFeJXZAyKlB3jZ9uLyJJQEMgHEvZsa0YnBQLYITTTO8mksaYDHGfpqPZtxe1vsDxgJFRplf+yB1FQxxQ6aTzHrOilJ7pR0KdEMyZujAIB1KOA09V5ovJZS8X//M6Cfi3TsrCOAEakvlDfsJNiMw8N7PHBCXAx4pgIphayyQDLDABla6u8rKX01klzauqbVXtx+ty7a5IroTO0Dm6QDa6QTX0gOqogQh6Q+/oA020ifapTbWveemaVvScoAVo37/NzagW</latexit><latexit sha1_base64="VffIXyXw8QC5b7zkHZNhbeQUseo=">AAACKnicbVDLSsNAFJ34rPEVFdy4CZaCG0sigi6LblxWsA9oY5hMJ+3QyYOZG2mN+Rm39mvcFbf+huCkzcK2HhjmcM69d+YeL+ZMgmVNtbX1jc2t7dKOvru3f3BoHB03ZZQIQhsk4pFoe1hSzkLaAAactmNBceBx2vKG97nfeqFCsih8gnFMnQD3Q+YzgkFJrnHaDTAMPD99zVz7OYXLnrogc42yVbVmMFeJXZAyKlB3jZ9uLyJJQEMgHEvZsa0YnBQLYITTTO8mksaYDHGfpqPZtxe1vsDxgJFRplf+yB1FQxxQ6aTzHrOilJ7pR0KdEMyZujAIB1KOA09V5ovJZS8X//M6Cfi3TsrCOAEakvlDfsJNiMw8N7PHBCXAx4pgIphayyQDLDABla6u8rKX01klzauqbVXtx+ty7a5IroTO0Dm6QDa6QTX0gOqogQh6Q+/oA020ifapTbWveemaVvScoAVo37/NzagW</latexit><latexit sha1_base64="VffIXyXw8QC5b7zkHZNhbeQUseo=">AAACKnicbVDLSsNAFJ34rPEVFdy4CZaCG0sigi6LblxWsA9oY5hMJ+3QyYOZG2mN+Rm39mvcFbf+huCkzcK2HhjmcM69d+YeL+ZMgmVNtbX1jc2t7dKOvru3f3BoHB03ZZQIQhsk4pFoe1hSzkLaAAactmNBceBx2vKG97nfeqFCsih8gnFMnQD3Q+YzgkFJrnHaDTAMPD99zVz7OYXLnrogc42yVbVmMFeJXZAyKlB3jZ9uLyJJQEMgHEvZsa0YnBQLYITTTO8mksaYDHGfpqPZtxe1vsDxgJFRplf+yB1FQxxQ6aTzHrOilJ7pR0KdEMyZujAIB1KOA09V5ovJZS8X//M6Cfi3TsrCOAEakvlDfsJNiMw8N7PHBCXAx4pgIphayyQDLDABla6u8rKX01klzauqbVXtx+ty7a5IroTO0Dm6QDa6QTX0gOqogQh6Q+/oA020ifapTbWveemaVvScoAVo37/NzagW</latexit>

z
t�dt

n
n

<latexit sha1_base64="BkZiDNn08nVbB4n5U6D5z/XOta4=">AAACKnicbVDLSgMxFM34rPU1KrhxEywFN5YZEXRZdOOygn1AW0smzbShmcyQ3JHWcX7Grf0ad8WtvyGYabuwrQdCDufce5N7vEhwDY4zsdbWNza3tnM7+d29/YND++i4psNYUValoQhVwyOaCS5ZFTgI1ogUI4EnWN0b3Gd+/YUpzUP5BKOItQPSk9znlICROvZpKyDQ9/zkNe3I5wQuu+aCtGMXnJIzBV4l7pwU0ByVjv3T6oY0DpgEKojWTdeJoJ0QBZwKluZbsWYRoQPSY8lw+u1FradI1Od0mOaLf+SmoZIETLeTWQ8uGqWL/VCZIwFP1YVBJNB6FHimMltML3uZ+J/XjMG/bSdcRjEwSWcP+bHAEOIsN9zlilEQI0MIVdyshWmfKELBpJs3ebnL6ayS2lXJdUru43WhfDdPLofO0Dm6QC66QWX0gCqoiih6Q+/oA42tsfVpTayvWemaNe85QQuwvn8BnluokA==</latexit><latexit sha1_base64="BkZiDNn08nVbB4n5U6D5z/XOta4=">AAACKnicbVDLSgMxFM34rPU1KrhxEywFN5YZEXRZdOOygn1AW0smzbShmcyQ3JHWcX7Grf0ad8WtvyGYabuwrQdCDufce5N7vEhwDY4zsdbWNza3tnM7+d29/YND++i4psNYUValoQhVwyOaCS5ZFTgI1ogUI4EnWN0b3Gd+/YUpzUP5BKOItQPSk9znlICROvZpKyDQ9/zkNe3I5wQuu+aCtGMXnJIzBV4l7pwU0ByVjv3T6oY0DpgEKojWTdeJoJ0QBZwKluZbsWYRoQPSY8lw+u1FradI1Od0mOaLf+SmoZIETLeTWQ8uGqWL/VCZIwFP1YVBJNB6FHimMltML3uZ+J/XjMG/bSdcRjEwSWcP+bHAEOIsN9zlilEQI0MIVdyshWmfKELBpJs3ebnL6ayS2lXJdUru43WhfDdPLofO0Dm6QC66QWX0gCqoiih6Q+/oA42tsfVpTayvWemaNe85QQuwvn8BnluokA==</latexit><latexit sha1_base64="BkZiDNn08nVbB4n5U6D5z/XOta4=">AAACKnicbVDLSgMxFM34rPU1KrhxEywFN5YZEXRZdOOygn1AW0smzbShmcyQ3JHWcX7Grf0ad8WtvyGYabuwrQdCDufce5N7vEhwDY4zsdbWNza3tnM7+d29/YND++i4psNYUValoQhVwyOaCS5ZFTgI1ogUI4EnWN0b3Gd+/YUpzUP5BKOItQPSk9znlICROvZpKyDQ9/zkNe3I5wQuu+aCtGMXnJIzBV4l7pwU0ByVjv3T6oY0DpgEKojWTdeJoJ0QBZwKluZbsWYRoQPSY8lw+u1FradI1Od0mOaLf+SmoZIETLeTWQ8uGqWL/VCZIwFP1YVBJNB6FHimMltML3uZ+J/XjMG/bSdcRjEwSWcP+bHAEOIsN9zlilEQI0MIVdyshWmfKELBpJs3ebnL6ayS2lXJdUru43WhfDdPLofO0Dm6QC66QWX0gCqoiih6Q+/oA42tsfVpTayvWemaNe85QQuwvn8BnluokA==</latexit><latexit sha1_base64="BkZiDNn08nVbB4n5U6D5z/XOta4=">AAACKnicbVDLSgMxFM34rPU1KrhxEywFN5YZEXRZdOOygn1AW0smzbShmcyQ3JHWcX7Grf0ad8WtvyGYabuwrQdCDufce5N7vEhwDY4zsdbWNza3tnM7+d29/YND++i4psNYUValoQhVwyOaCS5ZFTgI1ogUI4EnWN0b3Gd+/YUpzUP5BKOItQPSk9znlICROvZpKyDQ9/zkNe3I5wQuu+aCtGMXnJIzBV4l7pwU0ByVjv3T6oY0DpgEKojWTdeJoJ0QBZwKluZbsWYRoQPSY8lw+u1FradI1Od0mOaLf+SmoZIETLeTWQ8uGqWL/VCZIwFP1YVBJNB6FHimMltML3uZ+J/XjMG/bSdcRjEwSWcP+bHAEOIsN9zlilEQI0MIVdyshWmfKELBpJs3ebnL6ayS2lXJdUru43WhfDdPLofO0Dm6QC66QWX0gCqoiih6Q+/oA42tsfVpTayvWemaNe85QQuwvn8BnluokA==</latexit>

zt
it<latexit sha1_base64="WqKHNwuRuaS6fCkA2p5YPyxETRk=">AAACKHicbZDLSsNAFIYn9VbjLV52boKl4KokIuiy6MZlBXuBNobJdNIOnVyYOZG2Ie/i1j6NO+nW9xCctFnY1h8Gfr5zzsyc34s5k2BZc620tb2zu1fe1w8Oj45PjNOzlowSQWiTRDwSHQ9LyllIm8CA004sKA48Ttve6DGvt9+okCwKX2ASUyfAg5D5jGBQyDUuegGGoeen08xNmQvZawqZa1SsmrWQuWnswlRQoYZr/PT6EUkCGgLhWMqubcXgpFgAI5xmei+RNMZkhAc0HS8+vcoGAsdDRsaZXv2Du8qGOKDSSZczZlWRvulHQp0QzAVduQgHUk4CT3Xma8n1Wg7/q3UT8O+dlIVxAjQky4f8hJsQmXlqZp8JSoBPlMFEMLWWSYZYYAIqW13lZa+ns2laNzXbqtnPt5X6Q5FcGV2iK3SNbHSH6ugJNVATETRF7+gDzbSZ9ql9afNla0krZs7RirTvX5IFqBI=</latexit><latexit sha1_base64="WqKHNwuRuaS6fCkA2p5YPyxETRk=">AAACKHicbZDLSsNAFIYn9VbjLV52boKl4KokIuiy6MZlBXuBNobJdNIOnVyYOZG2Ie/i1j6NO+nW9xCctFnY1h8Gfr5zzsyc34s5k2BZc620tb2zu1fe1w8Oj45PjNOzlowSQWiTRDwSHQ9LyllIm8CA004sKA48Ttve6DGvt9+okCwKX2ASUyfAg5D5jGBQyDUuegGGoeen08xNmQvZawqZa1SsmrWQuWnswlRQoYZr/PT6EUkCGgLhWMqubcXgpFgAI5xmei+RNMZkhAc0HS8+vcoGAsdDRsaZXv2Du8qGOKDSSZczZlWRvulHQp0QzAVduQgHUk4CT3Xma8n1Wg7/q3UT8O+dlIVxAjQky4f8hJsQmXlqZp8JSoBPlMFEMLWWSYZYYAIqW13lZa+ns2laNzXbqtnPt5X6Q5FcGV2iK3SNbHSH6ugJNVATETRF7+gDzbSZ9ql9afNla0krZs7RirTvX5IFqBI=</latexit><latexit sha1_base64="WqKHNwuRuaS6fCkA2p5YPyxETRk=">AAACKHicbZDLSsNAFIYn9VbjLV52boKl4KokIuiy6MZlBXuBNobJdNIOnVyYOZG2Ie/i1j6NO+nW9xCctFnY1h8Gfr5zzsyc34s5k2BZc620tb2zu1fe1w8Oj45PjNOzlowSQWiTRDwSHQ9LyllIm8CA004sKA48Ttve6DGvt9+okCwKX2ASUyfAg5D5jGBQyDUuegGGoeen08xNmQvZawqZa1SsmrWQuWnswlRQoYZr/PT6EUkCGgLhWMqubcXgpFgAI5xmei+RNMZkhAc0HS8+vcoGAsdDRsaZXv2Du8qGOKDSSZczZlWRvulHQp0QzAVduQgHUk4CT3Xma8n1Wg7/q3UT8O+dlIVxAjQky4f8hJsQmXlqZp8JSoBPlMFEMLWWSYZYYAIqW13lZa+ns2laNzXbqtnPt5X6Q5FcGV2iK3SNbHSH6ugJNVATETRF7+gDzbSZ9ql9afNla0krZs7RirTvX5IFqBI=</latexit><latexit sha1_base64="WqKHNwuRuaS6fCkA2p5YPyxETRk=">AAACKHicbZDLSsNAFIYn9VbjLV52boKl4KokIuiy6MZlBXuBNobJdNIOnVyYOZG2Ie/i1j6NO+nW9xCctFnY1h8Gfr5zzsyc34s5k2BZc620tb2zu1fe1w8Oj45PjNOzlowSQWiTRDwSHQ9LyllIm8CA004sKA48Ttve6DGvt9+okCwKX2ASUyfAg5D5jGBQyDUuegGGoeen08xNmQvZawqZa1SsmrWQuWnswlRQoYZr/PT6EUkCGgLhWMqubcXgpFgAI5xmei+RNMZkhAc0HS8+vcoGAsdDRsaZXv2Du8qGOKDSSZczZlWRvulHQp0QzAVduQgHUk4CT3Xma8n1Wg7/q3UT8O+dlIVxAjQky4f8hJsQmXlqZp8JSoBPlMFEMLWWSYZYYAIqW13lZa+ns2laNzXbqtnPt5X6Q5FcGV2iK3SNbHSH6ugJNVATETRF7+gDzbSZ9ql9afNla0krZs7RirTvX5IFqBI=</latexit>

fit<latexit sha1_base64="vioCYqRF+xF+zCVXC6OgM4wXC9I=">AAACGXicbZDLSsNAFIZP6q3GW9Wlm2ApuCqJCLosunFZwV6gDWUynbRDJ5MwcyItoQ/h1j6NO3HryocRnLZZ2NYDAz/ff86ZmT9IBNfout9WYWt7Z3evuG8fHB4dn5ROz5o6ThVlDRqLWLUDopngkjWQo2DtRDESBYK1gtHD3G+9MKV5LJ9xkjA/IgPJQ04JGtQKexnv4bRXKrtVd1HOpvByUYa86r3ST7cf0zRiEqkgWnc8N0E/Iwo5FWxqd1PNEkJHZMCy8eKVq2ygSDLkdDy1K39wx0hJIqb9bDnjVAzpO2GszJHoLOjKIhJpPYkC0xkRHOp1bw7/8zophnd+xmWSIpN0eVGYCgdjZx6T0+eKURQTIwhV3HzLoUOiCEUTpm3y8tbT2RTN66rnVr2nm3LtPk+uCBdwCVfgwS3U4BHq0AAKI3iFN5hZM+vd+rA+l60FK585h5Wyvn4BapShuw==</latexit><latexit sha1_base64="vioCYqRF+xF+zCVXC6OgM4wXC9I=">AAACGXicbZDLSsNAFIZP6q3GW9Wlm2ApuCqJCLosunFZwV6gDWUynbRDJ5MwcyItoQ/h1j6NO3HryocRnLZZ2NYDAz/ff86ZmT9IBNfout9WYWt7Z3evuG8fHB4dn5ROz5o6ThVlDRqLWLUDopngkjWQo2DtRDESBYK1gtHD3G+9MKV5LJ9xkjA/IgPJQ04JGtQKexnv4bRXKrtVd1HOpvByUYa86r3ST7cf0zRiEqkgWnc8N0E/Iwo5FWxqd1PNEkJHZMCy8eKVq2ygSDLkdDy1K39wx0hJIqb9bDnjVAzpO2GszJHoLOjKIhJpPYkC0xkRHOp1bw7/8zophnd+xmWSIpN0eVGYCgdjZx6T0+eKURQTIwhV3HzLoUOiCEUTpm3y8tbT2RTN66rnVr2nm3LtPk+uCBdwCVfgwS3U4BHq0AAKI3iFN5hZM+vd+rA+l60FK585h5Wyvn4BapShuw==</latexit><latexit sha1_base64="vioCYqRF+xF+zCVXC6OgM4wXC9I=">AAACGXicbZDLSsNAFIZP6q3GW9Wlm2ApuCqJCLosunFZwV6gDWUynbRDJ5MwcyItoQ/h1j6NO3HryocRnLZZ2NYDAz/ff86ZmT9IBNfout9WYWt7Z3evuG8fHB4dn5ROz5o6ThVlDRqLWLUDopngkjWQo2DtRDESBYK1gtHD3G+9MKV5LJ9xkjA/IgPJQ04JGtQKexnv4bRXKrtVd1HOpvByUYa86r3ST7cf0zRiEqkgWnc8N0E/Iwo5FWxqd1PNEkJHZMCy8eKVq2ygSDLkdDy1K39wx0hJIqb9bDnjVAzpO2GszJHoLOjKIhJpPYkC0xkRHOp1bw7/8zophnd+xmWSIpN0eVGYCgdjZx6T0+eKURQTIwhV3HzLoUOiCEUTpm3y8tbT2RTN66rnVr2nm3LtPk+uCBdwCVfgwS3U4BHq0AAKI3iFN5hZM+vd+rA+l60FK585h5Wyvn4BapShuw==</latexit><latexit sha1_base64="vioCYqRF+xF+zCVXC6OgM4wXC9I=">AAACGXicbZDLSsNAFIZP6q3GW9Wlm2ApuCqJCLosunFZwV6gDWUynbRDJ5MwcyItoQ/h1j6NO3HryocRnLZZ2NYDAz/ff86ZmT9IBNfout9WYWt7Z3evuG8fHB4dn5ROz5o6ThVlDRqLWLUDopngkjWQo2DtRDESBYK1gtHD3G+9MKV5LJ9xkjA/IgPJQ04JGtQKexnv4bRXKrtVd1HOpvByUYa86r3ST7cf0zRiEqkgWnc8N0E/Iwo5FWxqd1PNEkJHZMCy8eKVq2ygSDLkdDy1K39wx0hJIqb9bDnjVAzpO2GszJHoLOjKIhJpPYkC0xkRHOp1bw7/8zophnd+xmWSIpN0eVGYCgdjZx6T0+eKURQTIwhV3HzLoUOiCEUTpm3y8tbT2RTN66rnVr2nm3LtPk+uCBdwCVfgwS3U4BHq0AAKI3iFN5hZM+vd+rA+l60FK585h5Wyvn4BapShuw==</latexit>

Bt
it<latexit sha1_base64="a9G/nI6zhilrHMU2clEH0nTOKYk=">AAACJnicbZDLSsNAFIYnXmu9xbp0EywFVyURQZelblxWsBdoY5hMJ+3QySTMnEhLyKu4tU/jTsSdLyI4abOwrT8M/HznnJk5vx9zpsC2v4yt7Z3dvf3SQfnw6Pjk1DyrdFSUSELbJOKR7PlYUc4EbQMDTnuxpDj0Oe36k/u83n2hUrFIPMEspm6IR4IFjGDQyDMrgxDD2A/SZualzIPsGTyzatfthaxN4xSmigq1PPNnMIxIElIBhGOl+o4dg5tiCYxwmpUHiaIxJhM8oul08eVVNpI4HjMyzcq1P7ivrcAhVW66nLFqmgytIJL6CLAWdOUiHCo1C33dmS+l1ms5/K/WTyC4c1Mm4gSoIMuHgoRbEFl5ZtaQSUqAz7TBRDK9lkXGWGICOtmyzstZT2fTdK7rjl13Hm+qjWaRXAldoEt0hRx0ixroAbVQGxE0Ra/oDc2NufFufBify9Yto5g5Rysyvn8BNbGmzg==</latexit><latexit sha1_base64="a9G/nI6zhilrHMU2clEH0nTOKYk=">AAACJnicbZDLSsNAFIYnXmu9xbp0EywFVyURQZelblxWsBdoY5hMJ+3QySTMnEhLyKu4tU/jTsSdLyI4abOwrT8M/HznnJk5vx9zpsC2v4yt7Z3dvf3SQfnw6Pjk1DyrdFSUSELbJOKR7PlYUc4EbQMDTnuxpDj0Oe36k/u83n2hUrFIPMEspm6IR4IFjGDQyDMrgxDD2A/SZualzIPsGTyzatfthaxN4xSmigq1PPNnMIxIElIBhGOl+o4dg5tiCYxwmpUHiaIxJhM8oul08eVVNpI4HjMyzcq1P7ivrcAhVW66nLFqmgytIJL6CLAWdOUiHCo1C33dmS+l1ms5/K/WTyC4c1Mm4gSoIMuHgoRbEFl5ZtaQSUqAz7TBRDK9lkXGWGICOtmyzstZT2fTdK7rjl13Hm+qjWaRXAldoEt0hRx0ixroAbVQGxE0Ra/oDc2NufFufBify9Yto5g5Rysyvn8BNbGmzg==</latexit><latexit sha1_base64="a9G/nI6zhilrHMU2clEH0nTOKYk=">AAACJnicbZDLSsNAFIYnXmu9xbp0EywFVyURQZelblxWsBdoY5hMJ+3QySTMnEhLyKu4tU/jTsSdLyI4abOwrT8M/HznnJk5vx9zpsC2v4yt7Z3dvf3SQfnw6Pjk1DyrdFSUSELbJOKR7PlYUc4EbQMDTnuxpDj0Oe36k/u83n2hUrFIPMEspm6IR4IFjGDQyDMrgxDD2A/SZualzIPsGTyzatfthaxN4xSmigq1PPNnMIxIElIBhGOl+o4dg5tiCYxwmpUHiaIxJhM8oul08eVVNpI4HjMyzcq1P7ivrcAhVW66nLFqmgytIJL6CLAWdOUiHCo1C33dmS+l1ms5/K/WTyC4c1Mm4gSoIMuHgoRbEFl5ZtaQSUqAz7TBRDK9lkXGWGICOtmyzstZT2fTdK7rjl13Hm+qjWaRXAldoEt0hRx0ixroAbVQGxE0Ra/oDc2NufFufBify9Yto5g5Rysyvn8BNbGmzg==</latexit><latexit sha1_base64="a9G/nI6zhilrHMU2clEH0nTOKYk=">AAACJnicbZDLSsNAFIYnXmu9xbp0EywFVyURQZelblxWsBdoY5hMJ+3QySTMnEhLyKu4tU/jTsSdLyI4abOwrT8M/HznnJk5vx9zpsC2v4yt7Z3dvf3SQfnw6Pjk1DyrdFSUSELbJOKR7PlYUc4EbQMDTnuxpDj0Oe36k/u83n2hUrFIPMEspm6IR4IFjGDQyDMrgxDD2A/SZualzIPsGTyzatfthaxN4xSmigq1PPNnMIxIElIBhGOl+o4dg5tiCYxwmpUHiaIxJhM8oul08eVVNpI4HjMyzcq1P7ivrcAhVW66nLFqmgytIJL6CLAWdOUiHCo1C33dmS+l1ms5/K/WTyC4c1Mm4gSoIMuHgoRbEFl5ZtaQSUqAz7TBRDK9lkXGWGICOtmyzstZT2fTdK7rjl13Hm+qjWaRXAldoEt0hRx0ixroAbVQGxE0Ra/oDc2NufFufBify9Yto5g5Rysyvn8BNbGmzg==</latexit>
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<latexit sha1_base64="FcJU+jv6w8lA/D8pnTfPG6nCovQ=">AAACLHicbZDLSgMxFIYz9VbrrepGcBMsBTeWGRF0WerGZQV7gV6GTJppQzMXkjPSMoxP49Y+jRsRt76FYKadhW39IfDznXOSnN8JBVdgmh9GbmNza3snv1vY2z84PCoenzRVEEnKGjQQgWw7RDHBfdYADoK1Q8mI5wjWcsb3ab31zKTigf8E05D1PDL0ucspAY3s4lnXIzBy3LiW2LGV9GO4GthWHxK7WDIr5lx43ViZKaFMdbv40x0ENPKYD1QQpTqWGUIvJhI4FSwpdCPFQkLHZMjiyfzjy2woSTjidJIUyn9wR1ufeEz14sUMLmsywG4g9fEBz+nSRcRTauo5ujNdTa3WUvhfrROBe9eLuR9GwHy6eMiNBIYAp8nhAZeMgphqQ6jkei1MR0QSCjrfgs7LWk1n3TSvK5ZZsR5vStVallwenaMLdIksdIuq6AHVUQNR9IJe0RuaGTPj3fg0vhatOSObOUVLMr5/AWyqqOo=</latexit><latexit sha1_base64="FcJU+jv6w8lA/D8pnTfPG6nCovQ=">AAACLHicbZDLSgMxFIYz9VbrrepGcBMsBTeWGRF0WerGZQV7gV6GTJppQzMXkjPSMoxP49Y+jRsRt76FYKadhW39IfDznXOSnN8JBVdgmh9GbmNza3snv1vY2z84PCoenzRVEEnKGjQQgWw7RDHBfdYADoK1Q8mI5wjWcsb3ab31zKTigf8E05D1PDL0ucspAY3s4lnXIzBy3LiW2LGV9GO4GthWHxK7WDIr5lx43ViZKaFMdbv40x0ENPKYD1QQpTqWGUIvJhI4FSwpdCPFQkLHZMjiyfzjy2woSTjidJIUyn9wR1ufeEz14sUMLmsywG4g9fEBz+nSRcRTauo5ujNdTa3WUvhfrROBe9eLuR9GwHy6eMiNBIYAp8nhAZeMgphqQ6jkei1MR0QSCjrfgs7LWk1n3TSvK5ZZsR5vStVallwenaMLdIksdIuq6AHVUQNR9IJe0RuaGTPj3fg0vhatOSObOUVLMr5/AWyqqOo=</latexit><latexit sha1_base64="FcJU+jv6w8lA/D8pnTfPG6nCovQ=">AAACLHicbZDLSgMxFIYz9VbrrepGcBMsBTeWGRF0WerGZQV7gV6GTJppQzMXkjPSMoxP49Y+jRsRt76FYKadhW39IfDznXOSnN8JBVdgmh9GbmNza3snv1vY2z84PCoenzRVEEnKGjQQgWw7RDHBfdYADoK1Q8mI5wjWcsb3ab31zKTigf8E05D1PDL0ucspAY3s4lnXIzBy3LiW2LGV9GO4GthWHxK7WDIr5lx43ViZKaFMdbv40x0ENPKYD1QQpTqWGUIvJhI4FSwpdCPFQkLHZMjiyfzjy2woSTjidJIUyn9wR1ufeEz14sUMLmsywG4g9fEBz+nSRcRTauo5ujNdTa3WUvhfrROBe9eLuR9GwHy6eMiNBIYAp8nhAZeMgphqQ6jkei1MR0QSCjrfgs7LWk1n3TSvK5ZZsR5vStVallwenaMLdIksdIuq6AHVUQNR9IJe0RuaGTPj3fg0vhatOSObOUVLMr5/AWyqqOo=</latexit><latexit sha1_base64="FcJU+jv6w8lA/D8pnTfPG6nCovQ=">AAACLHicbZDLSgMxFIYz9VbrrepGcBMsBTeWGRF0WerGZQV7gV6GTJppQzMXkjPSMoxP49Y+jRsRt76FYKadhW39IfDznXOSnN8JBVdgmh9GbmNza3snv1vY2z84PCoenzRVEEnKGjQQgWw7RDHBfdYADoK1Q8mI5wjWcsb3ab31zKTigf8E05D1PDL0ucspAY3s4lnXIzBy3LiW2LGV9GO4GthWHxK7WDIr5lx43ViZKaFMdbv40x0ENPKYD1QQpTqWGUIvJhI4FSwpdCPFQkLHZMjiyfzjy2woSTjidJIUyn9wR1ufeEz14sUMLmsywG4g9fEBz+nSRcRTauo5ujNdTa3WUvhfrROBe9eLuR9GwHy6eMiNBIYAp8nhAZeMgphqQ6jkei1MR0QSCjrfgs7LWk1n3TSvK5ZZsR5vStVallwenaMLdIksdIuq6AHVUQNR9IJe0RuaGTPj3fg0vhatOSObOUVLMr5/AWyqqOo=</latexit>
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<latexit sha1_base64="MbxrdGaysEkd7e2H/feBX8hEEJg=">AAACLHicbZDLSsNAFIYn9VbjLepGcBMsBTeWRARdlrpxWcFeoJcwmU7aoZNJmDmRlhCfxq19Gjcibn0LwellYVt/GPj5zjkzc34/5kyB43wYuY3Nre2d/K65t39weGQdn9RVlEhCayTikWz6WFHOBK0BA06bsaQ49Dlt+MP7ab3xTKVikXiCcUw7Ie4LFjCCQSPPOmuHGAZ+kFYyLxVZN4Wrnie6kHlWwSk5M9nrxl2YAlqo6lk/7V5EkpAKIBwr1XKdGDoplsAIp5nZThSNMRniPk1Hs48vs77E8YCRUWYW/+CWtgKHVHXS+Yxd1KRnB5HUR4A9o0sX4VCpcejrzulqarU2hf/VWgkEd52UiTgBKsj8oSDhNkT2NDm7xyQlwMfaYCKZXssmAywxAZ2vqfNyV9NZN/XrkuuU3MebQrmySC6PztEFukQuukVl9ICqqIYIekGv6A1NjInxbnwaX/PWnLGYOUVLMr5/AT11qWQ=</latexit><latexit sha1_base64="MbxrdGaysEkd7e2H/feBX8hEEJg=">AAACLHicbZDLSsNAFIYn9VbjLepGcBMsBTeWRARdlrpxWcFeoJcwmU7aoZNJmDmRlhCfxq19Gjcibn0LwellYVt/GPj5zjkzc34/5kyB43wYuY3Nre2d/K65t39weGQdn9RVlEhCayTikWz6WFHOBK0BA06bsaQ49Dlt+MP7ab3xTKVikXiCcUw7Ie4LFjCCQSPPOmuHGAZ+kFYyLxVZN4Wrnie6kHlWwSk5M9nrxl2YAlqo6lk/7V5EkpAKIBwr1XKdGDoplsAIp5nZThSNMRniPk1Hs48vs77E8YCRUWYW/+CWtgKHVHXS+Yxd1KRnB5HUR4A9o0sX4VCpcejrzulqarU2hf/VWgkEd52UiTgBKsj8oSDhNkT2NDm7xyQlwMfaYCKZXssmAywxAZ2vqfNyV9NZN/XrkuuU3MebQrmySC6PztEFukQuukVl9ICqqIYIekGv6A1NjInxbnwaX/PWnLGYOUVLMr5/AT11qWQ=</latexit><latexit sha1_base64="MbxrdGaysEkd7e2H/feBX8hEEJg=">AAACLHicbZDLSsNAFIYn9VbjLepGcBMsBTeWRARdlrpxWcFeoJcwmU7aoZNJmDmRlhCfxq19Gjcibn0LwellYVt/GPj5zjkzc34/5kyB43wYuY3Nre2d/K65t39weGQdn9RVlEhCayTikWz6WFHOBK0BA06bsaQ49Dlt+MP7ab3xTKVikXiCcUw7Ie4LFjCCQSPPOmuHGAZ+kFYyLxVZN4Wrnie6kHlWwSk5M9nrxl2YAlqo6lk/7V5EkpAKIBwr1XKdGDoplsAIp5nZThSNMRniPk1Hs48vs77E8YCRUWYW/+CWtgKHVHXS+Yxd1KRnB5HUR4A9o0sX4VCpcejrzulqarU2hf/VWgkEd52UiTgBKsj8oSDhNkT2NDm7xyQlwMfaYCKZXssmAywxAZ2vqfNyV9NZN/XrkuuU3MebQrmySC6PztEFukQuukVl9ICqqIYIekGv6A1NjInxbnwaX/PWnLGYOUVLMr5/AT11qWQ=</latexit><latexit sha1_base64="Q8D3Le3lPcmBJ2+msH86KstzHck=">AAACBHicbZDNSgMxFIXv1L86Vq1rN8FScFVm3OhScOOygv2Bdih3Mpk2NJMZkoy0DH0Bt30ad+Jb+DCC6bQL23ogcPhOcpOcMBNcG8/7dioHh0fHJ9VT96zmnl9c1mtdneaKsg5NRar6IWomuGQdw41g/UwxTELBeuH0aZX33pjSPJWvZp6xIMGx5DGnaCxqj+oNr+WVIvvG35gGbDSq/wyjlOYJk4YK1Hrge5kJClSGU8EW7jDXLEM6xTErZuXrttlYYTbhdLZwm3/wwFqJCdNBsT5DmpZEJE6VXdKQkm4NwkTreRLanQmaid7NVvC/bJCb+CEouMxywyRdXxTngpiUrOohEVeMGjG3Bqni9luETlAhNbZE19bl75azb7p3Ld9r+S8eVOEabuAWfLiHR3iGNnSAQgTvsHSWzofzua614mz6vYItOV+/lMmcDw==</latexit><latexit sha1_base64="HCEA9HHkBPLwm4fS5eD5oYXIieE=">AAACIXicbZBLS8NAFIVv6qvWqtWV4CZYCm4siRtdim5cVrAP6CNMppN26GQSZm6kJcRf49b+Gjci/hTB6WNhWw8MHL4zr3v8WHCNjvNp5ba2d3b38vuFg+Lh0XHppNjQUaIoq9NIRKrlE80El6yOHAVrxYqR0Bes6Y8eZnnzhSnNI/mMk5h1QzKQPOCUoEFe6awTEhz6QXqfeanMeile9T3Zw8wrlZ2qM5e9adylKcNSNa/00+lHNAmZRCqI1m3XibGbEoWcCpYVOolmMaEjMmDpeP7xVTZQJB5yOs4KlT+4bawkIdPddHHGrhjSt4NImSXRntOVi0io9ST0zc7ZaHo9m8H/snaCwW035TJOkEm6eChIhI2RPWvO7nPFKIqJMYQqbsay6ZAoQtH0WzB9uevtbJrGddV1qu6TA3k4hwu4BBdu4A4eoQZ1oPAKb/AOU2tqfVhfi2Zz1rLiU1iR9f0L9mWnzQ==</latexit><latexit sha1_base64="HCEA9HHkBPLwm4fS5eD5oYXIieE=">AAACIXicbZBLS8NAFIVv6qvWqtWV4CZYCm4siRtdim5cVrAP6CNMppN26GQSZm6kJcRf49b+Gjci/hTB6WNhWw8MHL4zr3v8WHCNjvNp5ba2d3b38vuFg+Lh0XHppNjQUaIoq9NIRKrlE80El6yOHAVrxYqR0Bes6Y8eZnnzhSnNI/mMk5h1QzKQPOCUoEFe6awTEhz6QXqfeanMeile9T3Zw8wrlZ2qM5e9adylKcNSNa/00+lHNAmZRCqI1m3XibGbEoWcCpYVOolmMaEjMmDpeP7xVTZQJB5yOs4KlT+4bawkIdPddHHGrhjSt4NImSXRntOVi0io9ST0zc7ZaHo9m8H/snaCwW035TJOkEm6eChIhI2RPWvO7nPFKIqJMYQqbsay6ZAoQtH0WzB9uevtbJrGddV1qu6TA3k4hwu4BBdu4A4eoQZ1oPAKb/AOU2tqfVhfi2Zz1rLiU1iR9f0L9mWnzQ==</latexit><latexit sha1_base64="fTGKndBp0xxuAOTMCLtgpPXv1Rc=">AAACLHicbZDLSsNAFIYnXmu9Vd0IboKl4MaSuNFlqRuXFewF2jRMJpN26GQSZk6kJcSncWufxo2IW99CcNJ2YVt/GPj5zjkzc34v5kyBZX0YG5tb2zu7hb3i/sHh0XHp5LSlokQS2iQRj2THw4pyJmgTGHDaiSXFocdp2xvd5/X2M5WKReIJJjF1QjwQLGAEg0Zu6bwXYhh6QVrP3FRk/RSufVf0IXNLZatqzWSuG3thymihhlv66fkRSUIqgHCsVNe2YnBSLIERTrNiL1E0xmSEBzQdzz6+zAYSx0NGxlmx8gd3tRU4pMpJ5zNmRRPfDCKpjwBzRpcuwqFSk9DTnflqarWWw/9q3QSCOydlIk6ACjJ/KEi4CZGZJ2f6TFICfKINJpLptUwyxBIT0PkWdV72ajrrpnVTta2q/WiVa/VFcgV0gS7RFbLRLaqhB9RATUTQC3pFb2hqTI1349P4mrduGIuZM7Qk4/sXPDWpYA==</latexit><latexit sha1_base64="MbxrdGaysEkd7e2H/feBX8hEEJg=">AAACLHicbZDLSsNAFIYn9VbjLepGcBMsBTeWRARdlrpxWcFeoJcwmU7aoZNJmDmRlhCfxq19Gjcibn0LwellYVt/GPj5zjkzc34/5kyB43wYuY3Nre2d/K65t39weGQdn9RVlEhCayTikWz6WFHOBK0BA06bsaQ49Dlt+MP7ab3xTKVikXiCcUw7Ie4LFjCCQSPPOmuHGAZ+kFYyLxVZN4Wrnie6kHlWwSk5M9nrxl2YAlqo6lk/7V5EkpAKIBwr1XKdGDoplsAIp5nZThSNMRniPk1Hs48vs77E8YCRUWYW/+CWtgKHVHXS+Yxd1KRnB5HUR4A9o0sX4VCpcejrzulqarU2hf/VWgkEd52UiTgBKsj8oSDhNkT2NDm7xyQlwMfaYCKZXssmAywxAZ2vqfNyV9NZN/XrkuuU3MebQrmySC6PztEFukQuukVl9ICqqIYIekGv6A1NjInxbnwaX/PWnLGYOUVLMr5/AT11qWQ=</latexit><latexit sha1_base64="MbxrdGaysEkd7e2H/feBX8hEEJg=">AAACLHicbZDLSsNAFIYn9VbjLepGcBMsBTeWRARdlrpxWcFeoJcwmU7aoZNJmDmRlhCfxq19Gjcibn0LwellYVt/GPj5zjkzc34/5kyB43wYuY3Nre2d/K65t39weGQdn9RVlEhCayTikWz6WFHOBK0BA06bsaQ49Dlt+MP7ab3xTKVikXiCcUw7Ie4LFjCCQSPPOmuHGAZ+kFYyLxVZN4Wrnie6kHlWwSk5M9nrxl2YAlqo6lk/7V5EkpAKIBwr1XKdGDoplsAIp5nZThSNMRniPk1Hs48vs77E8YCRUWYW/+CWtgKHVHXS+Yxd1KRnB5HUR4A9o0sX4VCpcejrzulqarU2hf/VWgkEd52UiTgBKsj8oSDhNkT2NDm7xyQlwMfaYCKZXssmAywxAZ2vqfNyV9NZN/XrkuuU3MebQrmySC6PztEFukQuukVl9ICqqIYIekGv6A1NjInxbnwaX/PWnLGYOUVLMr5/AT11qWQ=</latexit><latexit sha1_base64="MbxrdGaysEkd7e2H/feBX8hEEJg=">AAACLHicbZDLSsNAFIYn9VbjLepGcBMsBTeWRARdlrpxWcFeoJcwmU7aoZNJmDmRlhCfxq19Gjcibn0LwellYVt/GPj5zjkzc34/5kyB43wYuY3Nre2d/K65t39weGQdn9RVlEhCayTikWz6WFHOBK0BA06bsaQ49Dlt+MP7ab3xTKVikXiCcUw7Ie4LFjCCQSPPOmuHGAZ+kFYyLxVZN4Wrnie6kHlWwSk5M9nrxl2YAlqo6lk/7V5EkpAKIBwr1XKdGDoplsAIp5nZThSNMRniPk1Hs48vs77E8YCRUWYW/+CWtgKHVHXS+Yxd1KRnB5HUR4A9o0sX4VCpcejrzulqarU2hf/VWgkEd52UiTgBKsj8oSDhNkT2NDm7xyQlwMfaYCKZXssmAywxAZ2vqfNyV9NZN/XrkuuU3MebQrmySC6PztEFukQuukVl9ICqqIYIekGv6A1NjInxbnwaX/PWnLGYOUVLMr5/AT11qWQ=</latexit><latexit sha1_base64="MbxrdGaysEkd7e2H/feBX8hEEJg=">AAACLHicbZDLSsNAFIYn9VbjLepGcBMsBTeWRARdlrpxWcFeoJcwmU7aoZNJmDmRlhCfxq19Gjcibn0LwellYVt/GPj5zjkzc34/5kyB43wYuY3Nre2d/K65t39weGQdn9RVlEhCayTikWz6WFHOBK0BA06bsaQ49Dlt+MP7ab3xTKVikXiCcUw7Ie4LFjCCQSPPOmuHGAZ+kFYyLxVZN4Wrnie6kHlWwSk5M9nrxl2YAlqo6lk/7V5EkpAKIBwr1XKdGDoplsAIp5nZThSNMRniPk1Hs48vs77E8YCRUWYW/+CWtgKHVHXS+Yxd1KRnB5HUR4A9o0sX4VCpcejrzulqarU2hf/VWgkEd52UiTgBKsj8oSDhNkT2NDm7xyQlwMfaYCKZXssmAywxAZ2vqfNyV9NZN/XrkuuU3MebQrmySC6PztEFukQuukVl9ICqqIYIekGv6A1NjInxbnwaX/PWnLGYOUVLMr5/AT11qWQ=</latexit><latexit sha1_base64="MbxrdGaysEkd7e2H/feBX8hEEJg=">AAACLHicbZDLSsNAFIYn9VbjLepGcBMsBTeWRARdlrpxWcFeoJcwmU7aoZNJmDmRlhCfxq19Gjcibn0LwellYVt/GPj5zjkzc34/5kyB43wYuY3Nre2d/K65t39weGQdn9RVlEhCayTikWz6WFHOBK0BA06bsaQ49Dlt+MP7ab3xTKVikXiCcUw7Ie4LFjCCQSPPOmuHGAZ+kFYyLxVZN4Wrnie6kHlWwSk5M9nrxl2YAlqo6lk/7V5EkpAKIBwr1XKdGDoplsAIp5nZThSNMRniPk1Hs48vs77E8YCRUWYW/+CWtgKHVHXS+Yxd1KRnB5HUR4A9o0sX4VCpcejrzulqarU2hf/VWgkEd52UiTgBKsj8oSDhNkT2NDm7xyQlwMfaYCKZXssmAywxAZ2vqfNyV9NZN/XrkuuU3MebQrmySC6PztEFukQuukVl9ICqqIYIekGv6A1NjInxbnwaX/PWnLGYOUVLMr5/AT11qWQ=</latexit><latexit sha1_base64="MbxrdGaysEkd7e2H/feBX8hEEJg=">AAACLHicbZDLSsNAFIYn9VbjLepGcBMsBTeWRARdlrpxWcFeoJcwmU7aoZNJmDmRlhCfxq19Gjcibn0LwellYVt/GPj5zjkzc34/5kyB43wYuY3Nre2d/K65t39weGQdn9RVlEhCayTikWz6WFHOBK0BA06bsaQ49Dlt+MP7ab3xTKVikXiCcUw7Ie4LFjCCQSPPOmuHGAZ+kFYyLxVZN4Wrnie6kHlWwSk5M9nrxl2YAlqo6lk/7V5EkpAKIBwr1XKdGDoplsAIp5nZThSNMRniPk1Hs48vs77E8YCRUWYW/+CWtgKHVHXS+Yxd1KRnB5HUR4A9o0sX4VCpcejrzulqarU2hf/VWgkEd52UiTgBKsj8oSDhNkT2NDm7xyQlwMfaYCKZXssmAywxAZ2vqfNyV9NZN/XrkuuU3MebQrmySC6PztEFukQuukVl9ICqqIYIekGv6A1NjInxbnwaX/PWnLGYOUVLMr5/AT11qWQ=</latexit>
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Figure 4.1: Asynchronous communication scheme used by the proposed algorithm.

moment t, then we set dti = 0. In addition, Dt
i denotes the double delay in communication, which

relates to the penultimate communication and can be expressed as follows: Dt
i = dti + d

t−dti−1
i + 1.

Note that the time index t increases if one of the workers performs an update.

Every worker node i has two copies of the decision variable corresponding to the last two
communications with the master, i.e., node i possesses xt−d

t
i and zti := xt−D

t
i . Since there has been

no communication after t− dti, we will clearly have

z
t−dti
i = zti = xt−D

t
i . (4.4)

We are interested in designing a distributed version of the BFGS method described in Section 4.2.1,
where each node at time t has an approximation Bt

i to the local Hessian (Hessian matrix of fi) where
Bt
i is constructed based on the local delayed decision variables xt−d

t
i and zti, and therefore the local

Hessian approximation will also be outdated satisfying

Bt
i = B

t−dti
i . (4.5)

An instance of the setting that we consider in this work is illustrated in Figure 4.1. At time t, one of
the workers, say it, finishes its task and sends a group of vectors and scalars (that we will precise
later) to the master node, avoiding communication of any p× p matrices as it is assumed that this
would be prohibitively expensive communication-wise. Then, the master node uses this information
to update the decision variable xt using the new information of node it and the old information of
the remaining workers. After this process, the master sends the updated information to node it.

We define the aggregate Hessian approximation as

Bt :=

n∑
i=1

Bt
i =

n∑
i=1

B
t−dti
i (4.6)

where we used (4.5). In addition, we introduce

ut :=

n∑
i=1

Bt
iz
t
i =

n∑
i=1

B
t−dti
i z

t−dti
i , gt :=

n∑
i=1

∇fi(zti) =

n∑
i=1

∇fi(z
t−dti
i ) (4.7)

as the aggregate Hessian-variable product and aggregate gradient respectively where we made use of
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the identities (4.4)–(4.5). All these vectors and matrices are only available at the master node since
it requires access to the information of all the workers.

Given that at step t+ 1 only a single index it is updated, using the identities (4.4)–(4.7), it follows
that the master has the update rules

Bt+1 = Bt +
(
Bt+1
it
−Bt

it

)
= Bt +

(
Bt
it −B

t−dti
it

)
, (4.8)

ut+1 = ut +
(
Bt+1
it

zt+1
it
−Bt

itz
t
it

)
= ut +

(
Bt+1
it

xt−d
t
it −B

t−dtit
it

xt−D
t
it

)
, (4.9)

gt+1 = gt +
(
∇fit(zt+1

it
)−∇fit(ztit)

)
= gt +

(
∇fit(x

t−dtit )−∇fit(x
t−Dtit )

)
. (4.10)

We observe that, only Bt+1
it

and ∇fit(zt+1
it

) = ∇fit(x
t−dtit ) are required to be computed at step t+ 1.

The former is obtained by the standard BFGS rule applied to fi carried out by the worker it:

Bt+1
it

= Bt
it +

yt+1
it

(yt+1
it

)>

αt+1
−

qt+1
it

(qt+1
it

)>

βt+1
(4.11)

with
αt+1 := (yt+1

it
)>st+1

it
yt+1
it

:= zt+1
it
− ztit = xt−d

t
it − xt−D

t
it , (4.12)

qt+1
it

:= Bt
its

t+1
it

, βt+1 := (st+1
it

)>Bt
its

t+1
it

= (st+1
it

)>qt+1
it

. (4.13)

Then, the master computes the new iterate as xt+1 = (Bt+1)−1
(
ut+1 − gt+1

)
and sends it to the

worker it. For the rest of the workers, we update the time counter without changing the variables, so
zt+1
i = zti and Bt+1

i = Bt
i for i 6= it. Although, updating the inverse (Bt+1)−1 may seem costly at first

glance, in fact it can be computed efficiently in O(p2) iterations, similar to standard implementations
of the BFGS methods. More specifically, if we introduce a new matrix

Ut+1 := (Bt)−1 −
(Bt)−1yt+1

it
(yt+1
it

)>(Bt)−1

(yt+1
it

)>st+1
it

+ (ytit)
>(Bt)−1yt+1

it

, (4.14)

then, by the Sherman-Morrison-Woodbury formula, we have the identity

(Bt+1)−1 = Ut+1 +
Ut+1(B

t−dtit
it

st+1
it

)(B
t−dtit
it

st+1
it

)TUt+1

(st+1
it

)TB
t−dtit
it

st+1
it
−(B

t−dti
it

st+1
it

)TUt+1(B
t−dtit
it

st+1
it

)
, (4.15)

Therefore, if we already have (Bt)−1, it suffices to have only matrix vector products. If we denote
vt+1 = (Bt)−1yt+1

it
and wt+1 := Ut+1qt+1

it
, then these equations can be simplified as

Ut+1 = (Bt)−1 − vt+1(vt+1)>

αt+1 + (vt+1)>yt+1
it

, vt+1 = (Bt)−1yt+1
it

, (4.16)

(Bt+1)−1 = Ut+1 +
wt+1(wt+1)>

βt+1 − (qt+1)>wt+1
, wt+1 := Ut+1qt+1

it
, (4.17)

where αt+1, βt+1,qt+1
it

and yt+1
it

are defined by (4.12)–(4.13).

The steps of the DAve-QN at the master node and the workers are summarized in Algorithm 4.1.
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Algorithm 4.1 DAve-QN (implementation)

Master:

Initialize x, Bi, g =
∑n
i=1∇fi(x), B−1 =

(
∑n
i=1 Bi)

−1,u =
∑n
i=1 Bix,

for t = 1 to T − 1 do
If a worker sends an update:
Receive ∆u, y, q, α, β from it
u = u + ∆u, g = g + y, v = (B)−1y

U = (B)−1 − vv>

α+v>y

w = Uq, (B)−1 = U + ww>

β−q>w

x = (B)−1(u− g)
Send x to the worker in return

Interrupt all workers
Output xT

Worker i:

Initialize xi = x, Bi

while not interrupted by master do
Receive x
si = x− zi
yi = ∇fi(x)−∇fi(zi)
qi = Bisi
α = y>i si
β = s>i B

t
isi

u = Bizi

Bi = Bi +
yiy
>
i

α
− qiq

>
i

β

∆u = Bix− u
zi = x
Send ∆u,yi,qi, α, β to the master

Note that steps at worker i is devoted to performing the update in (4.11). Using the computed
matrix Bi, node i evaluates the vector ∆u. Then, it sends the vectors ∆u, yi, and qi as well as the
scalars α and β to the master node. The master node uses the variation vectors ∆u and y to update
u and g. Then, it performs the update xt+1 = (Bt+1)−1

(
ut+1 − gt+1

)
by following the efficient

procedure presented in (4.16)–(4.17). A more detailed version of Algorithm 1 with exact indices is
presented in Appendix B.1.

We define epochs {Tm}m by setting T1 = 0 and the following recursion:

Tm+1 = min{t : each machine made at least 2 updates on the interval [Tm, t]}

= min{t : t−Dt
i ≥ Tm for all i = 1, ..,M}.

The proof of the following simple lemma is provided in the Appendix.

Lemma 1. Algorithm 4.1 iterates satisfy xt =
(

1
n

∑n
i=1 B

t
i

)−1 ( 1
n

∑n
i=1 B

t
iz
t
i − 1

n

∑n
i=1∇fi(zti)

)
.

The result in Lemma 1 shows that explicit relationship between the updated variable xt based on
the proposed DAve-QN and the local information at the workers. We will use this update to analyze
DAve-QN.

Proposition 1 (Epochs’ properties). The following relations between epochs and delays hold:

• For any t ∈ [Tm+1, Tm+2) and any i = 1, 2, . . . , n one has t−Dt
i ∈ [Tm, t).

• If delays are uniformly bounded, i.e., there exists a constant d such that dti ≤ d for all i and t,
then for all m we have Tm+1 − Tm ≤ D := 2d+ 1 and Tm ≤ Dm.

• If we define average delays as dt := 1
n

∑n
i=1 d

t
i, then dt ≥ (n− 1)/2. Moreover, assuming that

dt ≤ (n− 1)/2 + d for all t, we get Tm ≤ 4n(d+ 1)m.

Clearly, without visiting every function we can not converge to x∗. Therefore, it is more convenient
to measure performance in terms of the number of passed epochs, which can be considered as our
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alternative counter for time. Proposition 1 explains how one can get back to the iterations time
counter assuming that delays are bounded uniformly or on average. However, uniform upper bounds
are rather pessimistic which motivates the convergence in epochs that we consider.

4.3 Convergence Analysis

In this section, we study the convergence properties of the proposed distributed asynchronous
quasi-Newton method. To do so, we first assume that the following conditions are satisfied.

Assumption 1. The component functions fi are L-smooth and µ-strongly convex, i.e., there exist
positive constants 0 < µ ≤ L such that, for all i and x, x̂ ∈ Rp

µ‖x− x̂‖2 ≤ (∇fi(x)−∇fi(x̂))T (x− x̂) ≤ L‖x− x̂‖2. (4.18)

Assumption 2. The Hessians ∇2fi are Lipschitz contunuous, i.e., there exists a positive constant
L̃ such that, for all i and x, x̂ ∈ Rp, we can write ‖∇2fi(x)−∇2fi(x̂)‖ ≤ L̃‖x− x̂‖.

It is well-known and widely used in the literature on Newton’s and quasi-Newton methods [177–180]
that if the function fi has Lipschitz continuous Hessian x 7→ ∇2fi(x) with parameter L̃ then

∥∥∇2fi(x̃)(x− x̂)− (∇fi(x)−∇fi(x̂))
∥∥ ≤ L̃‖x− x̂‖max {‖x− x̃‖, ‖x̂− x̃‖} , (4.19)

for any arbitrary x, x̃, x̂ ∈ Rp. See, for instance, Lemma 3.1 in [177].

Lemma 2. Consider the DAve-QN algorithm summarized in Algorithm 4.1. For any i, define the
residual sequence for function fi as σti := max{‖zti −x∗‖, ‖zt−D

t
i

i −x∗‖} and set Mi = ∇2fi(x
∗)−1/2.

If Assumptions 1 and 2 hold and the condition σti < µ/(3L̃) is satisfied then a Hessian approximation
matrix Bt

i and its last updated version B
t−Dti
i satisfy

∥∥Bt
i−∇2fi(x

∗)
∥∥
Mi
≤

[[
1−αθt−D

t
i

i

2
] 1

2

+ α3σ
t−Dti
i

]∥∥∥Bt−Dti
i −∇2fi(x

∗)
∥∥∥
Mi

+α4σ
t−Dti
i , (4.20)

where α, α3, and α4 are some positive constants and θt−D
t
i

i =
‖Mi(B

t−Dti
i −∇2fi(x

∗))s
t−Dti
i ‖

‖Bt−D
t
i

i −∇2fi(x∗)‖Mi
‖M−1

i s
t−Dt

i
i ‖

with the

convention that θt−D
t
i

i = 0 in the special case B
t−Dti
i = ∇2fi(x

∗).

Lemma 2 shows that, if we neglect the additive term α4σ
t−Dti
i in (4.20), the difference between the

Hessian approximation matrix Bt
i for the function fi and its corresponding Hessian at the optimal

point ∇2fi(x
∗) decreases by following the update of Algorithm 4.1. To formalize this claim and show

that the additive term is negligible, we prove in the following lemma that the sequence of errors
‖xt − x∗‖ converges to zero R-linearly which also implies linear convergence of the sequence σti .

Lemma 3. Consider the DAve-QN method outlined in Algorithm 4.1. Further assume that the
conditions in Assumptions 1 and 2 are satisfied. Then, for any r ∈ (0, 1) there exist positive constants
ε(r) and δ(r) such that if ‖x0 − x∗‖ < ε(r) and ‖B0

i −∇2fi(x
∗)‖M < δ(r) for M = ∇2fi(x

∗)−1/2

and i = 1, 2, . . . , n, the sequence of iterates generated by DAve-QN satisfy ‖xt − x∗‖ ≤ rm‖x0 − x∗‖
for all t ∈ [Tm, Tm+1).
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Figure 4.2: Expected suboptimality versus time. The first and second numbers indicated next to the
name of the datasets are the variables p and n respectively.

The result in Lemma 3 shows that the error for the sequence of iterates generated by the DAve-QN
method converges to zero at least linearly in a neighborhood of the optimal solution. Using this
result, in the following theorem we prove our main result, which shows a specific form of superlinear
convergence.

Theorem 1. Consider the proposed method outlined in Algorithm 4.1. Suppose that Assumptions 1
and 2 hold. Further, assume that the required conditions for the results in Lemma 2 and Lemma 3 are
satisfied. Then, the sequence of residuals ‖xt − x∗‖ satisfies limt→∞

maxt∈[Tm+1,Tm+2) ‖xt−x∗‖
maxt∈[Tm,Tm+1) ‖xt−x∗‖ = 0.

Proof. See Appendix B.

The result in Theorem 1 shows that the maximum residual in an epoch divided by the maximum
residual for the previous epoch converges to zero. This observation shows that there exists a
subsequence of residuals ‖xt − x∗‖ that converges to zero superlinearly.
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Extension to non-strongly convex objectives: For convex objectives f that are not strongly
convex, the Hessian matrix ∇2f(x) can be singular which causes stability issues with the Hessian
approximation of BFGS-type methods. A popular approach to solve this issue is to add a regularizing
ε‖x‖2 term to the objective for an appropriately chosen ε > 0 that is small enough. This leads to a
strongly convex approximation of the objective and regularizes the Hessian. With this approach, our
algorithm and analysis can be applied to convex functions that are not strongly convex if the domain
is compact, following similar ideas to [181, Section 5.4].

4.4 Experiments

We conduct our experiments on four datasets (covtype, SUSY, mnist8m, cifar10) from the LIBSVM
library [132].1 For the first two datasets, the objective considered is a binary logistic regression
problem f(x) = 1

n

∑n
i=1 log(1 + exp(−biaTi x) + λ

2 ‖x‖
2 where ai ∈ Rp are the feature vectors and

bi ∈ {−1,+1} are the labels. The other two datasets are about multi-class classification instead
of binary classification. For comparison, we used two other algorithms designed for distributed
optimization:

• Distributed Average Repeated Proximal Gradient (DAve-RPG, [58]). It is a recently proposed
competitive state-of-the-art asynchronous method for first-order distributed optimization,
numerically demonstrated to outperform incremental aggregated gradient methods ( [139, 170])
and synchronous proximal gradient methods [58].

• Distributed Approximate Newton (DANE, [157]). This is a well-known Newton-like method
that does not require a parameter server node but performs reduce operations at every step.

• Globally Improved Approximate Newton (GIANT, [182]). It is a distributed synchronous
communication-efficient Newton-type method that reduces to the DANE method for quadratic
objectives. For more general smooth objectives with a Lipschitz Hessian, it enjoys a local
linear-quadratic convergence rate. It has also been shown in [182] to numerically outperform
the DANE [157], L-BFGS [183], and Accelerated Gradient Descent [178] methods on a number
of problems.

In our experiments, we did not implement algorithms that require shared memory (such as ASAGA
[144] or Hogwild! [62]) because, in our setting of the master/worker communication model, the
memory is not shared. Since the focus of this work is mainly on asynchronous algorithms where the
communication delays are the main bottleneck, for fairness reasons, we are also not comparing our
method with some other synchronous algorithms such as DISCO ( [159]) that would not support
asynchronous computations. Our code is publicly available at https://github.com/DAve-QN/

source.
The experiments are conducted on XSEDE Comet CPUs (Intel Xeon E5-2680v3 2.5 GHz) [133].

For DAve-QN and DAve-RPG we build a cluster of 17 processes in which 16 of the processes are
workers and one is the master. The DANE method does not require a master so we use 16 workers
for its experiments. We split the data randomly among the processes so that each has the same

1We use all the datasets without any pre-processing except for the smaller-scale covtype dataset, which we enlarged
5 times for bigger scale experiments using the approach in [160].

https://github.com/DAve-QN/source
https://github.com/DAve-QN/source
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amount of samples. In our experiments, Intel MKL 11.1.2 and MVAPICH2/2.1 are used for the
BLAS (sparse/dense) operations and we use MPI programming compiled with mpicc 14.0.2.

For the methods’ parameters, the best options provided by the method authors are used. For
DAve-QN, we use a unit step size that is asymptotically optimal. We observed that DAve-QN
converged to the optimal point for step size=1 (although sometimes progress was a bit slower in the
beginning) and therefore we used it in all experiments. For DAve-RPG the step size 1

L is used where
L is found by a standard backtracking line search similar to [184]. DANE has two parameters, η and
µ. As recommended by the authors, we use η = 1 and µ = 3λ. We tuned λ to the dataset, choosing
λ = 1 for the mnist8m and cifar10 datasets, λ = 0.001 for SUSY and λ = 0.1 for the covtype. The
results we obtained were also qualitatively similar when we used the common choice λ = 1/n for all
the methods. Since DANE requires a local optimization problem to be solved, we use SVRG ( [185])
as its local solver where its parameters are selected based on the experiments in [157].

We note that DAve-QN has a computation complexity of O(p2) per iteration which is due to the
matrix-vector multiplications, a memory complexity of O(p2) because of storing a p× p matrix on
the workers and master, and communication complexity of O(p) as it only requires to send some
scalars and vectors in Rp. More specifically, DAve-QN exchanges 3p+ 2 numbers (slave to master)
and p numbers (master to slave), whereas DAve-RPG exchanges 2p numbers and DANE exchanges
4p numbers (counting both slave and master side) which are all O(p).

Our results are summarized in Figure 4.2 where we report the average suboptimality versus time
on a logarithmic y-axis. For linearly convergent algorithms, the slope of the performance curves
determines the convergence rate. The plots contain the error bars based on 5 runs. Since we are
using silent machines from XSEDE/Comet that run an experiment in isolation, we do not see much
variability in the runs. DANE method is the slowest on these datasets, but it does not need a
master, therefore it can apply to multi-agent applications ( [67]) where master nodes are often not
available. We observe that DAve-QN performs significantly better on all the datasets except cifar10,
illustrating the superlinear convergence behavior provided by our theory compared to other methods.
For the cifar10 dataset, p is the largest and GIANT is the fastest. Although DAve-QN starts
faster than DAve-RPG, DAve-RPG has a cheaper iteration complexity (O(p) compared to O(p2) of
DAve-QN) and becomes eventually faster.

4.5 Conclusion

In this work, we focused on the problem of minimizing a large-scale empirical risk minimization in
a distributed manner. We used an asynchronous architecture that requires no global coordination
between the master node and the workers. Unlike distributed first-order methods that follow the
gradient direction to update the iterates, we proposed a distributed averaged quasi-Newton (DAve-
QN) algorithm that uses a quasi-Newton approximate Hessian of the workers’ local objective function
to update the decision variable. In contrast to second-order methods that require computation
of the local functions Hessians, the proposed DAve-QN only uses gradient information to improve
the convergence of first-order methods in ill-conditioned settings. It is worth mentioning that the
computational cost of each iteration of DAve-QN is O(p2), while the size of the vectors that are
communicated between the master and workers is O(p). Our theoretical results show that the
sequence of iterates generated at the master node by following the update of DAve-QN converges
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superlinearly to the optimal solution when the objective functions at the workers are smooth and
strongly convex. Our results hold for both bounded delays and unbounded delays with a bounded
time-average. Numerical experiments illustrate the performance of our method.

The choice of the step size in the initial stages of the algorithm is the key to getting good overall
iteration complexity for second-order methods. Investigating several line search techniques developed
for BFGS and adapting them to the distributed asynchronous setting is a future research direction
of interest. Another promising direction would be developing Newton-like methods that can go
beyond superlinear convergence while preserving communication complexity. Finally, investigating
the dependence of the convergence properties on the sample size mi of each machine i would be
interesting, in particular, one would expect the performance in terms of communication complexity
to improve if the sample size of each machine is increased.

Limitations. In this chapter, we assume that each worker can store the approximation of the
Hessian matrix locally which is infeasible for machines that have storage limitations. Therefore,
limited-memory BFGS (LBFGS) methods can be used to tackle this challenge. However, this requires
further analysis of the convergence. Moreover, in order to ensure global convergence, one can use an
adaptive step size based on line search methods.



Chapter 5

Asynchronous Communications for
Optimization Methods on Cloud

In this chapter, we develop a novel framework for machine learning practitioners to implement
and dispatch asynchronous optimization methods with custom asynchronous execution models on
cloud and distributed memory platforms. While we implemented an asynchronous quasi-Newton
method using the MPI framework in Chapter 4, we observed a lack of necessary tools and frameworks
for implementing it on cloud platforms. Hence, we propose ASYNC which is a bulk processing
computing framework that is built on top of Spark [72] and provides necessary tools and API so
that a wide range of asynchronous optimization algorithms can easily be implemented on distributed
cloud platforms. ASYNC supports both first-order and second-order optimization methods with
communication models ranging from synchronous to fully asynchronous. Moreover, ASYNC allows
the efficient implementation of optimization methods that require history of gradients. Operations on
a history of gradients augment the noise (stochasticity) to improve convergence [186]. The detailed
contributions of ASYNC are:

• A novel framework for machine learning practitioners to implement and dispatch asynchronous
machine learning applications with custom asynchronous communication models on cloud and
distributed platforms. ASYNC introduces three modules to cloud engines, ASYNCcoordinator,
ASYNCbroadcaster, and ASYNCscheduler to enable the asynchronous gather, broadcast, and
schedule of tasks and results.

• An efficient history recovery strategy implemented with the ASYNCbroadcaster and bookkeeping
attributes, to facilitate the implementation of variance-reduced optimization methods that
operate on historical gradients.

• A robust programming model with extensions to the Spark API that enables the implementation
of asynchrony and history while preserving the in-memory and fault-tolerant features of Spark.

• A demonstration of ease-of-implementation in ASYNC with the implementation and performance
analysis of the stochastic gradient descent (SGD) [187] algorithm and its asynchronous variant.
Our results demonstrate that asynchronous SAGA (ASAGA) [63] and asynchronous SGD

49
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(ASGD) outperform their synchronous variants up to 4 times on a distributed system with
stragglers.

5.1 Introduction

The challenges of dealing with huge datasets have lead to the development of optimizations methods
with asynchrony and history. Asynchronous optimization methods reduce worker idle times and
mitigate communication costs. Operations on a history of gradients augment the noise (stochasticity)
to improve convergence [186]. Distributed optimization methods operate on batches of data and
thus have to be implemented in cluster-computing engines with a bulk (coarse-grained) computation
model.

Several general coarse-grained distributed data processing systems exist. Hadoop [188] and
Spark [72] are based on the iterative map-reduce model but use a synchronous iterative communication
pattern. Thus, because of not supporting asynchrony, their execution is vulnerable to the diverse
performance profile caused by slow workers, i.e., stragglers, and network latency. Also, history cannot
be efficiently maintained in these engines as it requires storing bulky worker-results, and introduces
overheads to their lineage-based [72] or checkpointing fault-tolerant implementations.

Recently, several coarse-grained machine learning engines such as Petuum [75] and Litz [76],
have adopted the parameter server [74] architecture to implement asynchronous communication
between nodes with push-pull operations. Asynchrony in distributed optimization methods is
implemented with consistency models, i.e., barriers, expressed via a dependency graph that maintains
a trade-off between system efficiency and algorithm convergence. Parameter server paradigms
implement a specific class of consistency models, i.e., stale synchronous parallel (SSP) paradigms
using a fixed dependency graph, which uses a static staleness threshold to control worker wait
times. However, recent advancements in distributed optimization [68,69] demand a wider range of
customized consistency models (CCMs), often defined by the user such as throttled-release [69], that
control worker wait times using parameters such as worker-task-completion time [68] and require to
adaptively adjust the parameters at runtime. CCMs can not be implemented in available parameter
server frameworks as they need the underlying dependency graph to adaptively be reconfigured
at runtime. Also, Petuum does not support history and Litz preserves the history by periodic
checkpointing with significant overheads. Among parameter servers, Glint [74] which is built on top
of Spark is the closest to our framework. Glint supports history but does not the implementation
CCMs. Also, the consistency model in Glint is optimized for computing topic models and is not
optimized for distributed optimization methods. Other distributed parameter server frameworks such
as DistBelief [189] and TensorFlow [78] are specialized for deep learning applications and thus do not
naturally support consistency models and history.

Amongst the fine-grained distributed data processing systems, primarily used for streaming
applications, RAY [190] and Flink [191] support asynchronous function invocations with dynamic
data flow graphs [192]. However, these frameworks do not support CCMs and are primarily designed
for fine-grained tasks, and thus cannot naturally extend to a bulk-processing engine. Also, while
streaming engines (because of processing fine tasks) can store local results and intermediate data on
workers to support history with low overhead, bulk processing engines cannot efficiently store the
worker-results because of processing coarse tasks.
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In principle, with massive system engineering efforts, machine learning practitioners can implement
one-off asynchronous optimization methods with re-engineering systems and interfaces. However, this
comes at the cost of pushing system challenges such as scheduling, bookkeeping, and fault tolerance
to the application developer. For example, Spark can support history if previous worker-results
are stored on disk and checkpointed; this will lead to storage overheads. To implement CCMs the
entire Spark engine has to change to support asynchronous execution. An expert MPI programmer
can use asynchronous primitives to implement SSP [193]. However, this leads to increased program
complexity and the complexity will increase if customized consistency models were to be implemented.
Noteworthy, MPI does not have robust support for fault tolerance and thus is typically not used for
cloud computing.

This work presents ASYNC, a bulk processing cloud-computing framework, built on top of Spark,
that supports the implementation of distributed optimization methods with asynchrony and history.
ASYNC implements an asynchronous execution to Spark’s engine and enables the workers and/or the
master to bookkeep (log) system-specific and application parameters. The asynchronous execution
paradigm and the bookkeeping structures work together to construct a dynamic dependence graph
for the implementation of custom consistency models and to recover history with a partial broadcast
of model parameters.

Related work. To mitigate the negative effects of stale gradients on convergence, numerous
optimization methods support asynchrony. The most widely used optimization algorithms with
asynchrony are stochastic gradient methods [62, 189] and coordinate descent algorithms [194]. Other
works implement asynchrony by altering the execution bound staleness [17,195], theoretically adapting
the method to the stale gradients [196], and by using barrier control strategies [68,197]. Variance
reduction approaches use the history of gradients to reduce the variance incurred by stochastic
gradients and to improve convergence [186, 198, 199]. Numerous algorithms implement variance
reduction techniques in asynchronous methods, some of which include ASAGA and DisSVRG [198]
which support asynchrony.

The demand for large-scale machine learning has led to the development of numerous cloud and
distributed computing frameworks. Commodity distributed dataflow systems such as Hadoop [188]
and Spark [72], as well as libraries implemented on top of them such as Mllib [135], are optimized
for coarse-grained, often bulk synchronous, parallel data transformations and thus do not provide
asynchrony in their execution models [72,188,200,201]. Recent work has modified frameworks such as
Spark to support asynchronous optimization methods. ASIP [73] introduces a communication layer
to Spark to support asynchrony, however, it only implements the asynchronous parallel consistency
model [75] and does not support history. Glint [74] integrates the parameter server model on Spark.
However, it is designed for topic models with a specialized consistency model.

Parameter server architectures such as [75,76] are widely used in distributed machine learning
since they support asynchrony in their execution models using a static dependency graph. Petuum [75]
implements the SSP execution model. Other parameter server frameworks include MLNET [202] and
Litz [76]. MLNET deploys a communication layer that uses tree-based overlays to implement dis-
tributed aggregation to only communicate the aggregated updates without the support for individual
communication of worker-results. These implementations do not support custom consistency models
required by asynchronous optimization methods nor the history of gradients. Finally, numerous
distributed computing frameworks have been developed to support specific applications. For example,
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DistBelief [189] and TensorFlow [78] support deep learning applications while fine-grained data
processing systems such as RAY [190] and Flink [191] are designed for streaming problems. The
frameworks can not be naturally extended to support mini-batch optimization methods that require
coarse-grained computation models.

5.2 Preliminaries

Distributed machine learning often results in solving an optimization problem in which an objective
function is optimized by iteratively updating the model parameters until convergence. Distributed
implementation of optimization methods includes workers that are assigned tasks to process parts of
the training data, and one or more servers, i.e., masters, that store and update the model parameters.
Distributed machine learning models often result in the following structure:

min
w∈Rd

F (w) =
1

m

m∑
i=1

f (i)(w) (5.1)

where w is the model parameter to be learned, m is the number of workers, and f (i)(w) is the local
loss function computed by worker i based on its assigned training data. Each worker has access to
ni data points, where the local cost has the form

f (i)(w) :=

ni∑
j=1

f̄
(i)
j (w) (5.2)

for some loss functions f̄ (i)
j : Rd → R. For example, in supervised learning, given an input-output

pair
(
xij , yij

)
, the loss function can be f̄ ij(w) = `(〈w, φ(xij)〉, yij) where φ is a fixed function of

choice and `(·, ·) is a convex loss function that measures the loss if yij is predicted from xij based
on the model parameter w. This setting covers empirical risk minimization problems in machine
learning that include linear and non-linear regression, and other classification problems such as logistic
regression [186]. In particular, if φ(x) = x and the `(·, ·) function is the square of the Euclidean
distance function, we obtain the familiar least-squares problem

f̄ ij(w) = ‖xTijw − yij‖2 (5.3)

where

f (i)(w) :=

ni∑
j=1

f̄
(i)
j (w) = ‖Aiw − bi‖2 (5.4)

with bi = {yij}nij=1 is a column vector of length ni and Ai ∈ Rni×d is called the data matrix as its
j-th row is given by the input xTij .

In the following, we use the gradient descent (GD) algorithm as an example to introduce stochastic
optimization and other terminology used throughout this work such as mini-batch size. The introduced
terms are used in all optimization problems and are widely used in the machine learning literature.
GD iteratively computes the gradient of the loss function ∇F (wk) = 1

m

∑m
i=1∇f (i)(wk) to update

the model parameters at iteration k. To implement gradient descent on a distributed system, each
worker i computes its local gradient ∇f (i)(wk); the local gradients are aggregated by the master when
ready. The full pass over the data at every iteration of the algorithm with synchronous updates leads
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to large overheads. Distributed stochastic gradient descent (SGD) methods and their variants [203]
are, on the other hand, scalable and popular methods for solving (5.1). Distributed SGD replaces
the local gradient ∇f (i)(wk) with an unbiased stochastic estimate ∇̃f (i)(wk) of it, computed from a
subset of local data points:

∇f̃ (i)(wk) :=
1

bi

∑
s∈Si,k

∇f̄ (i)
s (wk), (5.5)

where Si,k ⊂ {1, . . . , ni} is a random subset that is sampled with or without replacement at iteration
k, and bi := |Si,k| is the number of elements in Si,k [187], also called the mini-batch size. To obtain
desirable accuracy and performance, implementations of stochastic optimization methods require
tuning algorithm parameters such as the step size and the mini-batch size in SGD [187].

5.3 Motivation for Asynchrony and History

Asynchrony is implemented to improve the convergence rate and time-to-solution of optimization
methods on cluster-computing platforms with slow machines (stragglers). In distributed optimization,
workers compute the local gradients of the objective function and then communicate the computed
gradients to the server. To proceed to the next iteration of the algorithm, the server updates the
shared model parameters with the received gradients, broadcasts the most recent model parameter,
and schedules new tasks. In asynchronous optimization, the server can proceed with the update and
broadcast of the model parameters without having to wait for all worker tasks to be complete. This
asynchrony allows the algorithm to make progress in the presence of stragglers which is known as an
increase in hardware efficiency [195]. However, this progress in computation comes at a cost, the
asynchrony inevitably adds staleness to the system wherein some of the workers compute gradients
using model parameters that may be several gradient steps behind the most updated set of model
parameters which can lead to poor convergence. This is also referred to as a worsening in statistical
efficiency [203].

Asynchronous optimization methods are formulated and implemented with properties that
balance statistical efficiency and hardware efficiency to maximize the performance of the optimization
methods on distributed systems. Consistency models, i.e., barrier control strategies, are used to
design asynchronous optimization methods that enable this balance. Barriers in asynchronous
algorithms determine if a worker should proceed to the next iteration or if it should wait until a
specific number of workers have communicated their results to the server. The most well-known
barrier control strategy is the Stale Synchronous Parallel (SSP), in which workers synchronize when
staleness (determined by the number of stragglers) exceeds a threshold. ASYNC supports SSP
and also facilitates the implementation of custom consistency models that apply barriers based on
parameters such as worker-task-completion time and scheduling delays.

History augments the noise from stochastic gradients to improve the convergence rate of the
optimization method. Distributed optimization methods, used in machine learning applications, are
typically stochastic [187]. Stochastic optimization methods use a noisy gradient computed from
random data samples instead of the true gradient which can lead to poor convergence. Variance
reduction techniques, used in both synchronous and asynchronous optimization, augment the noisy
gradient to reduce this variance. A class of variance-reduced asynchronous algorithms, that have
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Figure 5.1: An overview of the ASYNC framework.

led to significant improvements over traditional methods, memorize the gradients computed in
previous iterations, i.e., historical gradients [166]. Historical gradients cannot be implemented in
cluster-computing engines such as Spark primarily because Spark can only broadcast the entire
history of the model parameters which can be very large and lead to significant overheads.

5.4 ASYNC: A Cloud Computing Framework with Asynchrony

and History

ASYNC is a framework, built on top of Spark [72], for the implementation and execution of asynchrony
and history in optimization algorithms while retaining the map-reduce model, scalability, and fault
tolerance of state-of-the-art cluster-computing engines. Figure 5.1 demonstrates an overview of the
ASYNC engine. The three main modules in ASYNC are the ASYNCcoordinator, ASYNCbroadcaster,
and ASYNCscheduler. ASYNC also collects and stores bookkeeping structures. These structures are
communicated between the workers and the master and are either system-specific, i.e., status, or are
related to the application, i.e., attributes. This section elaborates on how the internal elements of
ASYNC work together to facilitate the implementation of asynchrony and history.

Bookkeeping structures in ASYNC. Bookkeeping structures are used by the main modules of
ASYNC to enable the implementation of asynchrony and history. These structures are collected by
ASYNC at runtime and stored on the master. With the help of the ASYNCcoordinator, each worker
communicates to the master, application-specific attributes such as task results and the mini-batch
size. Workers’ recent status, such as worker staleness, average-task-completion time, and availability1

are also logged and stored in a table called STAT with the help of the ASYNCcoordinator.

Implementing asynchrony with the ASYNCcoordinator, ASYNCscheduler, and the status structures.
To implement asynchrony, ASYNC implements a dynamic task graph computation model which
uses the consistency model to dynamically determine executing tasks and their assigned workers.
The execution of tasks on workers is automatically triggered by the system using a computation
graph. Task and data objects are the nodes in this graph and the edges are the dependency
amongst nodes/tasks. The computation graph in classic consistency models such as SSP does not

1A worker is available if it is not executing a task and unavailable otherwise.
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change at runtime because the models do not rely on runtime information such as the system state.
However, many CCMs take information from the current state of the system as input and couple
this information with the barrier control strategy to dynamically build the computation graph. To
implement CCMs, the ASYNCcoordinator periodically communicates with the workers to update
system-specific parameters in the STAT table. The ASYNCscheduler uses the parameters in STAT
and a user-defined barrier control strategy to update the computation graph. Then the computation
graph is executed to apply the desired consistency model.

Implementing history with the ASYNCbroadcaster and the attributes. In each iteration of an
optimization method with history, the computed gradients from previous iterations are used together
with the current model parameters to update the model parameters. Implementing history in a
coarse-grained computation engine via explicitly storing bulky worker-results, i.e., previous gradients,
leads to significant storage overheads. A fault-tolerant execution will also have overheads as large
gradients have to be periodically check-pointed or recomputed explicitly using a lineage.

ASYNC does not explicitly store, communicate, or compute past gradients. Instead, we use the
approach from [186] in which the history of past gradients is recovered, when needed, using previous
model parameters. Recovering history has low storage and computation overheads in coarse-grained
computation models. By recovering history, workers in ASYNC do not need to store any previously
computed gradients and only the previous model parameters are stored on the master. The cost
of storing the model parameters has an inverse relation to the batch size [187] and thus reduces
as the granularity of tasks increases, e.g., larger batch sizes. Also, to recover a past gradient, a
worker only needs to subtract its recent model parameter from the previous model parameter that
is broadcasted to it from the master; the approach in [186] is then used to update the master-side
model parameters based on the history. The ASYNCbroadcaster in ASYNC is responsible for the
asynchronous broadcast of model parameters between the master and individual workers. Attributes
such as the mini-batch size, required by the master to apply history to its model parameters, are also
broadcast using the ASYNCbroadcaster.

5.5 Programming with ASYNC

To use ASYNC, developers are provided an additional set of ASYNC-specific functions, on top
of what Spark provides, to access the bookkeeping structures and to implement asynchrony and
history. The programming model in ASYNC is close to that of Spark [72]. It operates on resilient
distributed datasets (RDD) to preserve the fault-tolerant and in-memory execution of Spark. The
ASYNC-specific functions also either transform the RDDs, known as transformations in Spark, or
conduct lazy actions. In this section, ASYNC’s programming model and API are first discussed. We
then show the implementation of SGD and its asynchronous variant which uses a CCM. A well-known
history-based optimization method called SAGA [166] and its asynchronous variant with a CCM is
also implemented.

5.5.1 The ASYNC Programming Model

Asynchronous Context (AC) is the entry to ASYNC and should be created only once in the beginning.
The ASYNCscheduler, the ASYNCbroadcaster, and the ASYNCcoordinator communicate via the
AC and with this communication create barrier controls, broadcast variables, and store workers’
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Table 5.1: Transformations, actions, and methods in ASYNC. AC is ASYNCcontext and Seq[T] is a
sequence of elements.

Actions

ASYNCreduce(f:(T,T) ⇒ T, AC)

ASYNCaggregate(zeroValue: U)
(seqOp: (U, T) ⇒ U,
combOp: (U, U) ⇒ U), AC)

Reduces the elements of the
RDD using the specified
associative binary operator.
Aggregates the elements of the
partition using the combine functions
and a neutral "zero" value.

Transformations ASYNCbarrier(f:T ⇒ Bool, Seq[T]) Returns a RDD containing elements
that satisfy a predicate f.

Methods

ASYNCcollect()
ASYNCcollectAll()
ASYNCbroadcast(T)
AC.STAT
AC.hasNext()

Returns a task result.
Returns a task result and its attributes.
Creates a dynamic broadcast variable.
Returns the current status of all workers.
Returns true if a task result exists.

task results and status. AC maintains the bookkeeping structures and ASYNC-specific functions,
including actions and transformations that operate on RDDs. Workers use ASYNC functions to
interact with AC and to store their results and attributes in the bookkeeping structures. The server
queries AC to update the model parameters or to access workers’ status. Table 5.1 lists the main
functions available in ASYNC. We show the signature of each operation by demonstrating the type
parameters in square brackets.

Collective operations in ASYNC. ASYNCreduce is an action that aggregates the elements of the
RDD on the worker and returns the result to the server. ASYNCreduce differs from Spark’s reduce
in two ways. First, Spark aggregates data across each partition and then combines the partial results
together to produce a final value. However, ASYNCreduce executes only on the worker and for each
partition. Secondly, reduce returns only when all partial results are combined on the server, but
ASYNCreduce returns immediately. Task results on the server are accessed using the ASYNCcollect
and ASYNCcollectAll methods. ASYNCcollect returns task results in FIFO (first-in-first-out) order
and also returns the worker attributes. The workers’ status can also be accessed with ASYNC.STAT.

Barrier and broadcast in ASYNC. ASYNCbarrier is a transformation, i.e., a deterministic
operation which creates a new RDD based on the workers’ status. ASYNCbarrier takes the recent
status of workers, STAT, and decides which workers to assign new tasks to, based on a user-defined
function. For example, for a fully asynchronous barrier model, the following function is declared:
f : STAT.foreach(true). In Spark, broadcast parameters are “broadcast variable” objects that wrap
around the to-be-broadcast value. ASYNCBroadcast also uses broadcast variables and similar to
Spark, the method value can be used to access the broadcast value. However, ASYNCbroadcast
differs from the broadcast implementation in Spark since it has access to an index. The index is
used internally by ASYNCbroadcast to get the ID of the previously broadcast variables for the
specified index. ASYNCbroadcast eliminates the need to broadcast values when accessing the history
of broadcast values.

5.5.2 Case Studies

The robust programming model in ASYNC provides control of low-level features in both the algorithm
and the execution platform to facilitate the implementation of asynchrony and history in optimization
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methods. The following demonstrates the implementation of well-known asynchronous optimization
methods ASGD and ASAGA in ASYNC as examples.

Algorithm 5.1 The SGD Algorithm
Input : points, numIterations, learning rate αi, sampling rate b
Output : model parameter w

1 for i = 1 to numIterations do
2 w_br = sc.broadcast(w)
3 gradient = points.sample(b).map(p ⇒ ∇fp(w_br.value)). reduce(_+_)
4 w -= αi ∗ gradient
5 return w

Algorithm 5.2 The ASGD Algorithm
Input : points, numIterations, learning rate αi, sampling rate b
Output :model parameter w

1 AC = new ASYNCcontext
2 for i = 1 to numIterations do
3 w_br = sc.broadcast(w)
4 points.ASYNCbarrier(f, AC.STAT).sample(b).map(p ⇒ ∇fp(w_br.value)) .ASYNCreduce(_+_, AC)
5 while AC.hasNext() do
6 gradient= AC.ASYNCcollect()
7 w -= αi ∗ gradient

8 return w

ASGD with ASYNC. An implementation of mini-batch stochastic gradient descent (SGD) using
the map-reduce model in Spark is shown in Algorithm 5.1. The map phase applies the gradient
function on the input data independently on workers. The reduce phase has to wait for all the
map tasks to be complete. Afterward, the server aggregates the task results and updates the model
parameter w. The asynchronous implementation of SGD in ASYNC is shown in Algorithm 5.2. With
only a few extra lines from the ASYNC API, colored in blue, the synchronous implementation of
SGD in Spark is transformed to ASGD. An ASYNCcontext is created in line 1 and is used in line 4
to create a barrier using the user-defined CCM indicated by f and based on the current workers’
status, AC.STAT. The partial results from each partition are then obtained and stored in AC in line
4. Finally, these partial results are accessed in line 6 and are used to update the model parameter in
line 7.

ASAGA with ASYNC. The SAGA implementation in Spark is shown in Algorithm 5.3. This
implementation is inefficient and not practical for large datasets as it needs to synchronously broadcast
a table of all stored model parameters to each worker, colored in red in Algorithm 5.3 line 5. The
size of this increases after each iteration and thus broadcasting it leads to large communication
overheads. As a result of the overhead, machine learning libraries that are built on top of Spark, such
as MLlib [135], do not provide implementations of optimization methods such as SAGA that require
the history of gradients. ASYNC resolves the overhead with ASYNCbroadcast. The implementation
of ASAGA is shown in Algorithm 5.4. ASYNCbroadcast is used to define a dynamic broadcast
in line 4. Then, the broadcast variable is used to compute the historical gradients in line 5. In
order to access the last model parameters for sample index, the method value is called in line 5. As
shown in Algorithm 5.4, there is no need to broadcast a table of parameters which allows for efficient
implementation of both SAGA and ASAGA in ASYNC.
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Algorithm 5.3 The SAGA Algorithm
Input : points, numIterations, learning rate α, sampling rate b, number of points n
Output :model parameter w

1 averageHistory = 0
2 store w in table
3 for i = 1 to numIterations do
4 w_br =sc.broadcast(w)
5 (gradient,history) = points.sample(b).map((index,p)⇒∇fp(w_br.value),∇fp(table[index])).reduce(_+_)
6 averageHistory += (gradient - history)∗ b∗n
7 w -= α ∗ (gradient - history + averageHistory )
8 update table

9 return w

Algorithm 5.4 The ASAGA Algorithm
Input : points, numIterations, learning rate α, sampling rate b, #points n, #partitions P
Output :model parameter w

1 AC = new ASYNCcontext
2 averageHistory = 0
3 for i = 1 to numIterations do
4 w_br = AC.ASYNCbroadcast(w)
5 points.ASYNCbarrier(f,AC.STAT).sample(b).map((index,p)⇒∇fp(w_br.value),

∇fp(w_br.value(index))).ASYNCreduce(_+_, AC)
6 while AC.hasNext() do
7 (gradient,history)= AC.ASYNCcollect()
8 averageHistory += (gradient - history)∗ b∗n/P
9 w -= α ∗ (gradient - history + averageHistory)

10 return w

CCMs in ASYNC. To enable the implementation of custom consistency models, ASYNC provides
the interface to implement user-defined functions that selectively choose from available workers based
on their status. Listing 5.1 demonstrates the implementation of two CCMs in ASYNC, CCM1 and
CCM2, as well as the SSP model. CCM1 is the throttled-release [69] barrier strategy that submits
tasks to available workers only when the number of available workers is at least k. CCM2 implements
a fully asynchronous barrier that allows workers to progress as soon as their current task finishes.

f: STAT.foreach(Avaialble_Workers >= k) % CCM1

f: STAT.foreach(true) % CCM2

f: STAT.foreach(MAX_Staleness < s) % The SSP barrier control with a staleness threshold ’s’

points.ASYNCbarrier(f, AC.STAT) % Apply the barrier

Listing 5.1: Pseudo-code for implementing CCMs in ASYNC.

5.6 Results

We evaluate the performance of ASYNC by implementing two asynchronous optimization methods,
namely ASGD and ASAGA, and their synchronous variants to solve least-squares problems. We
implement the throttled-release CCM for both asynchronous methods and use history in ASAGA and
SAGA. The performance of ASGD and ASAGA are compared to their synchronous implementations
in Spark. To the best of our knowledge, no library or implementation of asynchronous optimization
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Table 5.2: Datasets for the experimental study.

Dataset Row numbers Column numbers Size
rcv1_full.binary 697,641 47,236 851.2MB
mnist8m 8,100,000 784 19GB
epsilon 400,000 2000 12.16GB

methods exists on Spark. However, Glint which is built on top of Spark supports asynchrony for
computing topic models. Therefore we implement the distributed optimization method ASGD
using Glint and compared it with the implementation of ASGD in ASYNC. Glint requires more
communication among its parameter servers and workers compared to ASYNC since it requires
multiple push-pull operations for batches of data. This extra communication overhead results in poor
performance for ASGD in Glint. Our experiments show that Glint converges approximately 10×
slower compared to ASYNC. Furthermore, to demonstrate that the synchronous implementations of
the algorithms using ASYNC are well-optimized, we first compare the performance of the synchronous
variants of the tested optimization methods in ASYNC with the state-of-the-art machine learning
library, MLlib [135]. MLlib is a library that provides implementations of a number of synchronous
optimization methods. Afterward, we evaluate the performance of ASGD and ASAGA in ASYNC in
the presence of stragglers.

5.6.1 Experimental Setup

We consider the distributed least-squares problem defined in (5.4). Our experiments use the datasets
listed in Table 6.2 from the LIBSVM library [132], all of which vary in size and sparsity. For the
experiments, we use ASYNC, Scala 2.11, MLlib [135], and Spark 2.3.2. Breeze 0.13.2 and netlib
1.1.2 are used for the (sparse/dense) BLAS operations in ASYNC. XSEDE Comet CPUs [133]
are used to assemble the cluster. ASYNC is available at https://github.com/ASYNCframework/
ASYNCframework.
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Figure 5.2: SGD implemented in ASYNC versus MLlib.
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To demonstrate the performance of asynchronous algorithms and their robustness to the hetero-
geneity in cloud environments, we evaluate the implemented methods in the presence of stragglers.
Two different straggler behaviors are used: (i) Controlled Delay Straggler (CDS) experiments in
which a single worker is delayed with different intensities; (ii) the Production Cluster Stragglers
(PCS) experiments in which straggler patterns from real production clusters are used. The CDS
experiments are run with all three datasets on a cluster composed of a server and 8 workers. The
PCS experiments require a larger cluster and thus are conducted on a cluster of 32 workers with one
server using the two larger datasets (mnist8m and epsilon). In all configurations, a worker runs an
executor with 2 cores. The number of data partitions is 32 for all datasets and in the implemented
algorithms. The experiments are repeated three times; the average is reported.

Parameter tuning : A sampling rate of b = 10% is selected for the mini-batching SGD for mnist8m
and epsilon and b = 5% is used for rcv1_full.binary. SAGA and ASAGA use b = 10% for epsilon, b
= 2% for rcv1_full.binary, and use b =1% for mnist8m. For the PCS experiment, we use b = 1% for
mnist8m and epsilon. We use the same step size as MLlib and tune it for SGD to converge faster. A
fixed step size is used in SAGA which is also tuned for faster convergence. The step size is not tuned
for the asynchronous algorithms. Instead, we use the following heuristic, the step size of ASGD and
ASAGA is computed by dividing the initial step size of their synchronous variants by the number of
workers [62]. We run the SGD algorithm in MLlib for 15000 iterations with a sampling rate of 10%
and use its final objective value as the baseline for the least-squares problem.

5.6.2 Comparison with MLlib

We use ASYNC for implementations of both synchronous and asynchronous variants of the algorithms
because (i) ASYNC’s performance for synchronous methods is similar to that of MLlib’s; (ii)
asynchronous methods are not supported in MLlib; (iii) synchronous methods that require the history
of gradients can not be implemented in MLlib because of discussed overheads. To demonstrate that
our implementations in ASYNC are optimized, we compare the performance of SGD in ASYNC
and MLlib for solving the least-squares problem [199]. Both implementations use the same initial
step size. The error is defined as the objective function value minus the baseline. Figure 5.2 shows
the error for three different datasets. The figure demonstrates that SGD in ASYNC has a similar
performance to that of Mllib’s on 8 workers, the same pattern is observed on 32 workers. Therefore,
for the rest of the experiments, we compare the asynchronous and synchronous implementations in
ASYNC.

5.6.3 Robustness to Stragglers

Controlled Delay Straggler: We demonstrate the effect of different delay intensities in a single worker
on SGD, ASGD, SAGA, and ASAGA by simulating a straggler with controlled delay [195,204]. From
the 8 workers in the cluster, a delay between 0% to 100% of the time of an iteration is added to one
of the workers. The delay intensity, which we show with delay-value %, is the percentage by which a
worker is delayed, e.g., a 100% delay means the worker is executing jobs at half speed. The controlled
delay is implemented with the sleep command. The first 100 iterations of both the synchronous and
asynchronous algorithms are used to measure the average iteration execution time.

The performance of SGD and ASGD for different delay intensities are shown in Figure 5.3 where
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Figure 5.3: The performance of ASGD and SGD in ASYNC with 8 workers for delay intensities of 0%,
30%, 60% and 100% which are shown with ASYNC/SYNC, ASYNC/SYNC-0.3, ASYNC/SYNC-0.6
and ASYNC/SYNC-1.0 respectively.

0% 30% 60% 100%

delay

0

1

2

3

4

5

6

a
v
e

ra
g

e
 w

a
it
 t

im
e

 p
e

r 
it
e

ra
ti
o

n
 (

m
s
)

ASGD-mnist8m

SGD-mnist8m

ASGD-epsilon

SGD-epsilon

ASGD-rcv1

SGD-rcv1

Figure 5.4: Average wait time per iteration with 8 workers for ASGD and SGD in ASYNC for
different delay intensities.

for the same delay intensity the asynchronous implementation always converges faster to the optimal
solution compared to the synchronous variant of the algorithm. As the delay intensity increases, the
straggler has a more negative effect on the runtime of SGD. However, ASGD converges to the optimal
point with almost the same rate for different delay intensities. This is because the ASYNCscheduler
continues to assign tasks to workers without having to wait for the straggler. When the task result
from the straggling worker is ready, it independently updates the model parameter. Thus, while
ASGD in ASYNC requires more iterations to converge, its overall runtime is considerably faster than
the synchronous method. With a delay intensity of 100%, a speedup of up to 2× is achieved with
ASGD vs. SGD.

Figure 5.4 shows the average wait time for each worker for all iterations for SGD and ASGD.
The wait time is defined as the time from when a worker submits its task result to the server
until it receives a new task. In the asynchronous algorithm, workers proceed without waiting for
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stragglers. Thus the average wait time does not change with changes in delay intensity. However, in
the synchronous implementation worker wait times increase with a slower straggler. For example, for
the mnist8m dataset in Figure 5.4, the average wait time for SGD increases significantly when the
straggler is two times slower (delay = 100%). Comparing Figure 5.3 with Figure 5.4 shows that the
overall runtime of ASGD and SGD is directly related to their average wait time where an increase in
the wait time negatively affects the algorithm’s convergence rate.

The slow worker pattern used for the ASGD experiments is also used for ASAGA. Figure 5.5
shows experiment results for SAGA and ASAGA. The communication pattern in ASAGA is different
from ASGD because of the broadcast required to compute historical gradients. In ASAGA, the
straggler and its delay intensity only affect the computation time of a worker and do not change the
communication cost. Therefore, the delay intensity does not have a linear effect on the overall runtime.
However, Figure 5.5 shows that increasing the delay intensity negatively affects the convergence rate
of SAGA while ASAGA maintains the same convergence rate for different delay intensities.
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Figure 5.5: The performance of ASAGA and SAGA in ASYNC for delay intensities of 0%, 30%,
60% and 100% which are shown with ASYNC/SYNC, ASYNC/SYNC-0.3, ASYNC/SYNC-0.6 and
ASYNC/SYNC-1.0 respectively.

The workers’ average wait time for ASAGA is shown in Figure 5.6. With an increase in delay
intensity, workers in SAGA wait for more for new tasks. The difference between the average wait
time of SAGA and ASAGA is more noticeable when the delay increases to 100%. In this case,
the computation time is significant enough to affect the performance of the synchronous algorithm,
however, ASAGA has the same wait time for all delay intensities.

Production Cluster Stragglers: Our PCS experiments are conducted on 32 workers with straggler
patterns in real production clusters [205,206]; these clusters are used frequently by machine learning
practitioners. We use the straggler behaviors reported in previous research [207, 208] all of which
are based on empirical analysis of production clusters from Microsoft Bing [206] and Google [205].
Empirical analysis from production clusters concluded that approximately 25% of machines in cloud
clusters are stragglers. Of those, 80% have a uniform probability of being delayed between 150%
to 250% of the average-task-completion time. The remaining 20% of the stragglers have abnormal
delays and are known as long-tail workers. Long-tail workers have a random delay between 250% to
10×. Of the 32 workers in our experiment, 6 are assigned a random delay between 150%-250% and
two are long-tail workers with a random delay over 250% up to 10×. The randomized delay seed is
fixed across three executions of the same experiment.

The performance of SGD and ASGD on 32 workers with PCS is shown in Figure 5.7a. As shown,
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Figure 5.6: Average wait time per iteration with 8 workers for ASAGA and SAGA for different delay
intensities.

ASGD converges to the solution considerably faster than SGD and leads to a speedup of 3× for
mnist8m and 4× for epsilon. From Figure 5.7b, ASAGA compared to SAGA obtains a speedup
of 3.5× and 4× for mnist8m and epsilon respectively. The average wait time for both algorithms
on 32 workers is shown in Table 5.3. The wait time increases considerably for all synchronous
implementations which results in slower convergence of the synchronous methods.

Table 5.3: Average wait time per iteration on 32 workers.

SAGA ASAGA SGD ASGD
mnist8m 42.8367 ms 9.8125 ms 6.4433 ms 3.5745 ms
epsilon 6.9926 ms 1.1721 ms 5.3112 ms 1.4165 ms

5.7 Conclusion

This work introduces the ASYNC framework that facilitates the implementation of asynchrony and
history in machine learning methods on cloud and distributed platforms. Along with bookkeeping
structures, the modules in ASYNC facilitate the implementation of numerous consistency models
and history. ASYNC is built on top of Spark to benefit from Spark’s in-memory computation model
and fault-tolerant execution. We present the programming model and interface that comes with
ASYNC and implement the synchronous and asynchronous variants of two well-known optimization
methods as examples. These examples only scratch the surface of the types of algorithms that can
be implemented in ASYNC. We hope that ASYNC helps machine learning practitioners with the
implementation and investigation of the promise of asynchronous optimization methods.

Limitations. Storing the history in ASYNC can become a bottleneck for optimization methods
with many iterations. Even though we did not observe this case in our experiments, this can slow



64 CHAPTER 5. ASYNCHRONOUS COMMUNICATIONS FOR OPTIMIZATION METHODS ON CLOUD

0 0.5 1 1.5 2 2.5 3 3.5

time(ms) 10
6

10
-3

10
-2

10
-1

10
0

10
1

10
2

e
rr

o
r

epsilon-ASYNC

epsilon-Sync

mnist8m-ASYNC

mnist8m-Sync

(a) The performance of ASGD and SGD in ASYNC
shown with ASYNC and SYNC respectively.

0 2 4 6 8 10

time(ms) 10
5

10
-3

10
-2

10
-1

10
0

10
1

e
rr

o
r

epsilon-ASYNC

epsilon-Sync

mnist8m-ASYNC

mnist8m-Sync

(b) ASAGA and SAGA in ASYNC shown with ASYNC
and SYNC respectively.

Figure 5.7: Comparing the performance of asynchronous methods vs their synchronous variants.

down the optimization process. Pruning strategies can reduce the size of history and hence improve
the overall performance. Moreover, the communication cost of broadcasting the model can become
comparable to the cost of communication of synchronous methods based on the choice of the barrier.
An extreme example is the broadcasting of the model after every single update.



Chapter 6

Structured Sparse Approximation for
Training Neural Networks

In this chapter, we develop a communication-efficient second-order optimization method for training
deep neural networks. Our proposed method belongs to the class of Natural Gradient Descent (NGD)
methods, which require computing the inverse of the Fisher information matrix (FIM). Computing
the inverse of the neural network’s Fisher information matrix is expensive because the Fisher matrix
is large, i.e., has a size of n× n, where n is the number of parameters. We propose HyLo, a hybrid
low-rank NGD method, that applies a structured sparsification to the Fisher information matrix
which can reduce the cost of communications and computations. The proposed approach uses a
gradient-based switching heuristic to decide when to switch between two low-rank approximations;
Khatri-Rao-based Interpolative Decomposition (KID) and Khatri-Rao-based Importance Sampling
(KIS). The contributions of this chapter are:

• A novel Khatri-Rao-based interpolative decomposition, as well as an importance sampling
approach that leverages the low-rank structure of FIM for fast factorization and inversion.

• A gradient-based switching strategy that determines when to switch between Khatri-Rao-based
interpolative decomposition and importance sampling to maintain a good balance between
accuracy and running time in NGD methods.

• An efficient distributed implementation of HyLo which is 1.7× and 1.4× faster than SGD and
KAISA [209], the state-of-the-art distributed implementation of the second-order method for
deep neural networks, on ResNet-50 model and 64 GPUs. We reduce the computation and
communication cost of NGD by 350× and 10.7× compared to KAISA for the ImageNet-1k
dataset on 64 GPUs.

6.1 Introduction

Natural gradient descent (NGD) [95], belongs to the class of second-order methods and accelerates
the training of deep neural networks (DNN) by capturing the geometry of the optimization landscape
with the Fisher Information Matrix (FIM) [210]. These methods demonstrate improved convergence

65
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Figure 6.1: The HyLo method vs KFAC and standard SNGD approaches. HyLo reduces the
computation and communication time of SNGD methods. It first factorizes the per-sample inputs
and output gradients using Khatri-Rao-based interpolative decomposition and importance sampling.
Then the reduced-size factors are gathered on workers to efficiently approximate the kernel matrix.

compared to first-order techniques such as stochastic gradient descent (SGD) as they compute the
inverse of FIM and use it to precondition the gradients before parameter updates [95]. However,
because the Fisher matrix is large and scales with the model size, finding its inverse is a major
bottleneck in NGD methods.

Recent work [33] shows that Kronecker-Factored Approximate Curvature (KFAC) can re-
duce the computation cost of FIM by approximating the FIM for a batch of samples with a
block-diagonal matrix, where blocks correspond to layers. Other variations of KFAC have been
proposed, e,g, EKFAC [211], which improves the accuracy of approximation further by rescal-
ing the Kronecker factors, or KBFGS [212], a Kronecker-based Quasi-Newton method that uses
Broyden–Fletcher–Goldfarb–Shanno (BFGS) [183] updates to accelerate KFAC. Amongst these
works, only the original KFAC method [33] has been implemented on large-scale distributed plat-
forms [89,209,213–215] to our knowledge. Osawa et al. [7] proposed a memory-optimized implemen-
tation of KFAC by distributing the layers’ factor computations across workers. Ueno et al. [213]
improve [7] by using a custom 21-bit floating-point format for communication amongst workers and
overlapping the communication with the computations involved in the backward pass. [214] proposes
a communication-optimized implementation of KFAC by reducing the frequency of communications
among workers and increasing the granularity of KFAC’s computations. KAISA [209] improves on [7]
and [214] by proposing a hybrid approach to choose between a communication-optimized and a
memory-optimized implementation of KFAC. However, because their approach is based on KFAC,
their scalability is limited by the computation and communication costs associated with computing
the inverse and eigendecompositions of the Kronecker factors.

Sherman-Morrison-Woodbury-based NGD (SNGD) methods, recently introduced in [53, 216],
leverage the structure of FIM for overparametrized models to use a matrix inversion technique called
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Sherman-Morrison-Woodbury (SMW) identity. This reduces the computation cost of inversion in NGD
methods for small batch sizes. As a result, SNGD methods perform better than KFAC approaches
when the batch size is relatively smaller than the layer dimension. However, SNGD methods are
not suitable for distributed settings because the inversion becomes a performance bottleneck as the
overall batch size grows linearly with the number of workers. Also, SNGD approaches only support
fully-connected layers and have not been extended to Convolutional Neural Networks (CNNs).

6.2 Motivation

In this section, we motivate our approach by analyzing the scalability of second-order optimization
methods. We first provide background on deep neural networks (DNNs) as well as first- and second-
order optimization methods and then compare the computation and communication complexity of
KFAC and SNGD methods at scale. Finally, we show that HyLo outperforms NGD methods in
distributed settings for models with large layers and large global batch sizes. Here, global batch size
refers to the total number of data points (cumulative over workers) used per iteration and will be
discussed further in Section 6.2.2.

6.2.1 Background

A deep neural network consists of L layers; each layer has parameters, i.e., weights, that are learned
during the training. For simplicity, we consider a fully-connected layer with input and output
dimensions d. The optimal parameters of a layer are obtained by minimizing the average loss L over
the training dataset:

L(w) =

N∑
i=1

`(w, xi) (6.1)

where {xi}Ni=1 is a dataset with N data points and w is the parameter to be learned. Typically, a
batch of m samples is used to compute the loss.

Natural gradient descent (NGD). Natural gradient descent belongs to the class of second-
order methods. It uses the Fisher Information Matrix (FIM) as a preconditioner for the gradient

wt+1 = wt − λ(Ft + αI)−1gt (6.2)

where Ft is the Fisher Information Matrix (FIM) at the iterate wt and α is the damping factor
which is used to stabilize the training [95]. The FIM is an approximation of the Hessian and contains
information about the curvature. Here, FIM is defined as 12:

F (·) =
1

m

m∑
i

∇L(·, xi)∇L(·, xi)> =
1

m
U>U (6.3)

where U = [∇L(w, x1), . . . ,∇L(w, xm)]> and Ft = F (wt). We refer to the matrix U ∈ Rm×d2

as the
Jacobian matrix. It contains the gradients for each sample in the batch, i.e., U = [U1, U2, ..., Um]>

where Ui is the gradient of the sample i. The Jacobian matrix has a row-wise Khatri-Rao structure,
1Note that FIM is sometimes defined differently as well based on the assumptions made on the model distribution [217].

Such assumptions do not affect our findings.
2For simplifying the notations, we drop the index t.
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i.e.
U = A ∗G (6.4)

where A ∈ Rm×d and G ∈ Rm×d are the per-sample layer’s inputs and output gradients and ∗ is the
row-wise Khatri-Rao product.

Kronecker Factorization Methods (KFAC). KFAC approximates the FIM with a block-
diagonal matrix, each block corresponds to a layer. Then the inverse of a block is approximated
using the Kronecker product of two matrices C1, C2 ∈ Rd×d called the Kronecker factors, γ is the
factor damping parameter

(F + αI)−1 ≈ (A>A+ γI)−1︸ ︷︷ ︸
C1

⊗ (G>G+ γI)−1︸ ︷︷ ︸
C2

(6.5)

SMW-based Natural Gradient Descent Methods (SNGD). SMW-based NGD methods,
which we call SNGD, leverage the structure of FIM in Equation 6.3 for overparametrized models as
well as the Khatri-Rao structure of Jacobian in Equation 6.4 while using the SMW identity to obtain
the inverse update:

(F + αI)−1 =
1

α

(
I − U>

(
AA> �GG> + αI

)︸ ︷︷ ︸
K

−1
U
)

(6.6)

where � is the element-wise matrix product. We refer to K = AA>�GG>+αI as the kernel matrix
throughout this chapter. The kernel matrix is symmetric positive semi-definite and has a dimension
of the global batch size.

6.2.2 Complexity Analysis of Distributed NGD Methods

In this section, we discuss the efficient distributed implementations of KFAC (adopted from KAISA
[209]) and standard SNGD methods and provide an analysis of the communication and computation
costs when executed on a multi-GPU cluster; we refer to each GPU as a worker from here on.
Figure 6.1 illustrates the distributed implementation of KFAC [209] and standard SNGD methods.

Distributed KFAC. Figure 6.1 shows the distributed implementation of KFAC on P workers, which
involves five stages. On each worker (1) per-sample inputs Ai and output gradients Gi are computed
using forward and backward passes on the network; (2) the Kronecker factors are computed according
to Equation 6.5; (3) the Kronecker factors are communicated to other workers and their average
is computed; (4) the Kronecker factors are inverted for worker’s assigned layers; (5) the inverted
factors are broadcast to other workers.

Distributed SNGD. To our knowledge SNGD methods have not been implemented on distributed
platforms, so we show a communication-optimized implementation for SNGD based on the strategies
proposed by [214] for second-order methods in Figure 6.1, and list the steps involved in the following.
On each worker i, (1) the per-sample inputs Ai and output gradients Gi are computed during
forward/backward passes on the network for a batch size of m; we refer to m as the local batch size,
these matrices have a size of m × d; (2) the matrices Ai and Gi are then gathered on the worker
to create matrices A and G which have size Pm× d. We refer to Pm as the global batch size since
it shows the total number of samples used in each iteration of the training; (3) the kernel matrix
of layer `, K` is computed and inverted using SNGD inversion in Equation 6.6. (4) The inverted
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Kernel matrices K−1
` are broadcast to other workers.

The computation cost in distributed KFAC includes computing and inverting the Kronecker
factors in steps 2 and 4 with a total cost of O(d3 + md2). KFAC communicates the Kronecker
factors and their inverses in steps 3 and 5 leading to an overall communication cost of O(d2). SNGD
computes the kernel matrix inversion in step 3 which has a computation cost of O(P 3m3 + P 2m2d)

and communicates the per-sample inputs/output gradients and inverses in steps 2 and 4 with a
total cost of O(P 2m2). KFAC’s computation and communication cost is proportional to the layer
dimension and has a cubic time complexity while SNGD’s cost grows with a cubic rate with respect
to the global batch size.
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Figure 6.2: Distribution of layer dimensions for different DNN models. The layer dimension is large
across all models.

6.2.3 Distributed HyLo vs. KFAC and SNGD

From the complexity analysis in Section 6.2.2, we observe that KFAC becomes inefficient for large
layers and SNGD fails to scale for large global batch sizes. In many deep learning models, the layer
dimension is large and hence KFAC becomes inefficient [218]. Figure 6.2 shows the distribution of
layer dimension across the most popular deep learning models which shows the layer dimension is
large for many layers in a model.

Figure 6.3 compares HyLo to standard SNGD and KFAC on 8 to 64 GPUs. While SNGD’s
running time is significantly less than KFAC on 8 and 16 GPUs, it fails to scale on 64 GPUs since
the global batch size increases and hence its overall cost. However, HyLo outperforms both KFAC
and SNGD on all settings because its overall cost is not adversely affected by the global batch size or
the layer dimension.
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Figure 6.3: Computation and communication time of KFAC, HyLo and Standard SNGD on ResNet-50.
Running time of KFAC and SNGD grows at scale. HyLo reduces the overall time by 28× and 20×
compared to KFAC and SNGD.

6.3 HyLo: An Efficient Implementation of Hybrid Low-Rank

Second-Order Method

We propose a hybrid low-rank second-order Method, called HyLo, that uses a Khatri-Rao-based
interpolative decomposition and an importance sampling method to improve the performance of
NGD methods on distributed platforms. HyLo belongs to the class of SNGD methods, however, it
scales efficiently for large global batch sizes. The algorithm 6.1 shows the steps in HyLo. It first
computes per worker, the per-sample inputs and output gradients (line 2). HyLo differs from prior
approaches as it does not gather the per-sample inputs Ai and output gradients Gi. It instead uses a
Gradient-based Switching Heuristic (lines 3-4) that decides when to switch between Khatri-Rao-based
Interpolative Decomposition (KID) (lines 5 to 10) and Importance Sampling (lines 13 to 18) to
reduce the size of Ai and Gi and hence the computation and communication overheads associated
with them. In the following, we will first explain KID and analyze its computation/communication
complexity and then discuss the importance sampling step. The gradient-based switching heuristic is
explained at the end.

6.3.1 Khatri-Rao-based Interpolative Decomposition

HyLo per worker uses a Khatri-Rao-based interpolative decomposition to reduce the size of per-sample
inputs/output gradients and hence the computation cost of the kernel matrix inversion and the
communication cost of the gather and broadcast steps (steps 3 and 5 in Figure 6.1). In line 5, the
per-sample inputs and output gradients matrices are approximated with smaller matrices, which we
call KID-factors, using interpolative decomposition. Each worker then communicates the KID-factors
to other workers. We propose a Khatri-Rao-based ID, shown in algorithm 6.2, that leverages the
structure of Jacobian in Equation 6.4 to create the KID-factors. KID applies the factorization to
the Gram matrix AiA>i �GiG>i , shown in line 1, which has a smaller size compared to individual
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Algorithm 6.1 HyLo: A Hybrid Low-rank Natural Gradient Method
1 while not converge do
2 Compute per-sample inputs Ai and output gradients Gi
3 R = |‖∆t+1‖ − ‖∆t‖| /‖∆t‖ /* Gradient-based heuristic */
4 if R ≥ η or learning rate decays then

/* Compute KID-factors with algorithm 6.2 */
5 Asi , G

s
i , Yi = KID(Ai, Gi, r)

/* Gather KID-factors */
6 As = [As1, ..., A

s
P ], Gs = [Gs1, ...G

s
P ], Y = diag(Y1, ..., YP )

7 for ` : 1, ..., L do
8 if layer is assigned to worker then

/* Inversion */

9 K̂−1
` = (AsAs> �GsGs>)−1

/* Broadcast */

10 Broadcast(K̂−1
` )

11 update w using Equation 6.2 and Equation 6.7
12 else

/* Compute KIS-factors with algorithm 6.3 */
13 [Asi , G

s
i ] = KIS(Ai, Gi, r)

/* Gather KIS-factors */
14 As = [As1, ..., A

s
P ], Gs = [Gs1, ...G

s
P ]

15 for ` : 1, ..., L do
16 if layer is assigned to worker then

/* Inversion */

17 K̂−1
` = (AsAs> �GsGs> + αI)−1

/* Broadcast */

18 Broadcast(K̂−1
` )

19 update w using Equation 6.2 and Equation 6.8



72 CHAPTER 6. STRUCTURED SPARSE APPROXIMATION FOR TRAINING NEURAL NETWORKS

Table 6.1: Comparison between the computation and communication complexities of distributed
KFAC, standard SNGD, and HyLo on a system with P workers for a fully-connected layer with
input/output dimension = d. m is the batch size per worker for KAISA and SNGD. r is the rank of
the kernel matrix and ρ = r

P is the number of samples per worker for HyLo.

Computation Communication Storage
Factorization Inversion Gather Broadcast

HyLo O(m2d+m3) O(r3 + r2d) O(ρd) O(r2) O(rd+ r2)
KFAC [209] O(md2) O(d3) O(d2) O(d2) O(d2)
SNGD - O(P 3m3 + P 2m2d) O(md) O(P 2m2) O(Pmd+ P 2m2)

matrices Ai and Gi, and uses its decomposition to create the KID-factors Asi , Gsi , and Yi shown
in line 4. In the second step, shown in line 6 of algorithm 6.1, Asi , Gsi , and Yi are gathered on the
worker to create matrices As = [As1, ..., A

s
P ], Gs = [Gs1, ..., G

s
P ] and Y = diag[Y1, ..., YP ], where diag(.)

creates a block-diagonal matrix. Each worker computes and inverts the approximated kernel matrix
for its assigned layers, shown in lines 8-9. We use A, G and Y to efficiently compute the kernel
matrix inversion. To reduce the inversion cost, we apply the SMW formula [219] to the approximated
kernel and obtain:

(F + αI)−1 ≈ 1

α

(
I − Us>

(
Y − Y (K̂−1 + Y )−1Y

)
Us
)

(6.7)

where K̂ = AsAs> �GsGs> and Us = As ∗Gs are the reduced size kernel and Jacobian. Once K̂ is
inverted, it is broadcast to all workers, as shown in line 10.

Algorithm 6.2 Khatri-Rao-based Interpolative Decomposition
Input :Per-sample inputs and output gradients matrices Ai ∈ Rm×d, Gi ∈ Rm×d, rank r.
Output : Asi ∈ Rr×d, Gsi ∈ Rr×d and the projected approximation error matrix Yi ∈ Rr×r.
/* Form Gram matrix */

1 Qi = AiA
>
i �GiG>i

/* Compute row indices S and projection P: Qi ≈ PQi(S:) */
2 [P, S] = ID(Qi, r)

/* Compute the residue */
3 R = Qi − PQi(S:)

/* Compute the KID-factors */
4 Asi = Ai(S:), G

s
i = Gi(S:), Yi = P>(R+ αI)−1P

return Asi , Gsi , Yi

6.3.2 Khatri-Rao-based Importance Sampling

An alternative to reduce the size of per-sample inputs Ai and output gradients Gi is to use randomized
sampling. HyLo uses Khatri-Rao-based importance sampling [220], shown in line 13 in algorithm 6.1,
to create the reduced-sized per-sample inputs and gradients, called KIS-factors. We apply norm-
based sampling to reduce the size of Ai and Gi by choosing the samples that contribute the most to
approximating the kernel matrix. The steps for importance sampling are shown in algorithm 6.3. It
assigns scores using Euclidean norm to each sample of a batch and selects from those accordingly.
The Khatri-Rao structure of Jacobian, (Equation 6.4), allows for an efficient evaluation of scores.
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In particular, the score for sample j is obtained as the product of its input and gradient norm, i.e.,
‖Ai(j:)‖‖Gi(j:)‖ where Ai(j:) is the j-th row of Ai and similarly for Gi. Once the KIS-factors Asi and
Gsi are created, they are gathered on the workers to form As = [As1, ...A

s
P ] and Gs = [Gs1, ..., G

s
P ].

Each worker inverts the kernel matrix K for its assigned layers, shown in lines 16-17. K is
approximated with a smaller matrix using As and Gs. Hence the FIM is inverted by:

(F + αI)−1 ≈ 1

α

(
I − Us>K̂−1Us

)
(6.8)

where K̂ = AsAs> �GsGs> + αI and Us = As ∗Gs are the reduced size kernel and Jacobian.
Once the kernel matrix for a layer is inverted, it is broadcast to all workers, as shown in line 18.

Algorithm 6.3 Khatri-Rao-based Importance Sampling
Input : Per-sample inputs and output gradients matrices Ai ∈ Rm×d, Gi ∈ Rm×d, number of

samples r.
Output :Asi ∈ Rr×d, Gsi ∈ Rr×d
/* Compute norm of inputs and gradients */

1 for j : 1, ...,m do
2 Pj = ‖Ai(j:)‖, Qj = ‖Gi(j:)‖

/* Compute sample scores */
3 Ω = P �Q

/* Choose r samples at random based on scores Ω */
4 Asi , G

s
i = sample(Ai, Gi,Ω, r)

Table 6.1 summarizes the complexity analysis of HyLo and KFAC [209] implemented on a
distributed platform with P workers for each step of the methods3. The computation cost of HyLo
involves the cost of factorization and inversion step and is O

(
r3 +m3 + (m2 + r2)d

)
. HyLo reduced

the computation cost compared to KFAC and SNGD from O(d3) and O(P 3m3) to O(r3 +m3). HyLo
also reduced the communication cost compared to KFAC and SNGD from O(d2) and O(P 2m2) to
O(r2).

6.3.3 Gradient-based Switching

HyLo chooses between Khatri-Rao-based interpolative decomposition and importance sampling at
the beginning of an epoch. The accumulated gradient of the objective function w.r.t the parameters
is used as a metric to determine which epochs benefit the most from KID (the method that has a
lower approximation error) or KIS (the method with the lower computation complexity). From [221],
epochs with a larger change in their accumulated gradient, i.e., critical epochs, contribute more to
the training. Small gradient errors in critical epochs can impair the training progress. Hence, our
switching method uses KID for critical epochs and importance sampling for others. As shown in
algorithm 6.1 lines 3-4, an epoch is critical when the learning rate decays or when the accumulated
gradient changes pass a threshold η: ∣∣∣∣‖∆t+1‖ − ‖∆t‖

‖∆t‖

∣∣∣∣ ≥ η (6.9)

where ‖∆t‖ is the l2-norm of accumulated gradients.
3KIS has a computation complexity of O(m2 + md) which is asymptotically smaller than KID and hence omitted.
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6.4 HyLo For Convolutional Neural Networks

HyLo is an SNGD-based approach and since these approaches are not formulated to support
convolutional neural networks (CNNs), in this section, we present the first extension of SNGD
methods to CNNs to our knowledge. First, we briefly review convolutional layers and then propose
an efficient formulation of SNGD for convolutional layers.

A convolutional layer operates on large dimensional tensors. In particular, the output tensor Y of
a convolutional layer is obtained by applying convolution to its input X and weights. To simplify the
notations, we assume X ,Y ∈ Rd×s×s, i.e., they contain d images of size s× s. Similarly, we denote
the corresponding output gradient with G.

The SNGD method in Equation 6.6 does not apply to CNNs because convolutional layers typically
operate on 4D tensors while the SMW identity is only for matrices (2D tensors). We extend the
SNGD formulation to convolutional layers by first expressing the convolution operation as a matrix
multiplication between reshaped input and output tensors. Formally, the gradient for one sample
is computed by X> · G where X = im2col(X ) and G = vec(G) in which im2col unfolds a three
dimensional tensor to a matrix by reshaping its blocks into 1-D vectors and vec reshapes the tensor
G by flattening its spatial dimension. Then the reshaped tensors are approximated over their spatial
dimensions. In particular, x̂ =

∑S
i X(i:) and ĝ =

∑S
i G(i:) where X(i:) and G(i:) are the i-th row of X

and G respectively. By concatenating the vectors x̂ and ĝ for a batch of samples, the approximated
per-sample inputs and gradients matrices are obtained, i.e., X̂ = [x̂>1 , ..., x̂

>
m]> and Ĝ = [ĝ>1 , ..., ĝ

>
m]>.

The approximated Jacobian Û is computed with their row-wise Khatri-Rao product, similar to
Equation 6.4. Finally, we leverage this structure and reformulate SNGD:

(F + αI)−1 ≈ 1

α
(I − Û>

(
C1 � C2 + αI

)−1
Û) (6.10)

where C1 = X̂X̂> and C2 = ĜĜ>.

6.5 Results

We compare the performance of HyLo on a cluster of 64 GPUs to KAISA [209], the state-of-the-art
distributed implementation of KFAC, and the efficient distributed implementation of stochastic
gradient descent, used as a first-order optimization method.4 To show that HyLo also improves
the performance for small batch sizes, we compare it on a single-GPU to KFAC and to other two
more-recent methods EKFAC [211] and KBFGS-L [222]. The methods EKFAC and KBFGS-L do
not have distributed implementations.

6.5.1 Methodology

The datasets and deep learning models listed in Table 6.2 are used for the experimental results.
Datasets. We use datasets from image classification and segmentation applications. ImageNet-

1k [223] has 1000 categories with approximately 1.3M training images and 50K validation images.
CIFAR-10 and CIFAR-100 [224] consist of 50K training images and 10K validation images in 10

4The only work that attempts to implement SNGD is SENG [216], however, their approach at large-scale does not
communicate second-order information and hence is not a (standard) NGD method.
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Table 6.2: Model and dataset used for experimental results.

Model Dataset Target GPU (#, type)
ResNet-50 ImageNet-1k 75.9% 64 V100
U-Net LGG Segmentation 91% 4 V100
ResNet-32 CIFAR-10 92.5% 32 K80
DenseNet CIFAR-100 75% 1 V100
3C1F Fashion-MNIST 93% 1 V100

classes. The LGG Segmentation dataset [225] contains Magnetic Resonance (MR) images of the
brain. We use 3336 images for training and 332 images for validation. Fashion-MNIST [226] consists
of a training set of 60K images and a test set of 10K examples that belong to 10 classes.

Models. We use state-of-the-art deep learning models listed in Table 6.2 for the experimental
results. For Fashion-MNIST a network with three convolutional layers and one fully-connected layer
is used, hence called 3C1F. For other benchmarks, the following DNN models are used: ResNet-50,
U-Net, ResNet-32 and DenseNet.

Target accuracy. Following lists our baselines for target accuracy for different experiments: (1)
For ResNet-50, we use the MLPerf benchmark target results [227]; (2) For U-Net, we use the target
validation Dice similarity coefficient (DSC) [225]. (3) For ResNet-32, we use the target test accuracy
reported in [228]. (4) For DenseNet we use the test accuracy in [229]. (5) For 3C1F we use the test
accuracy of tuned SGD.

GPU Clusters. Results are obtained on two clusters: (1) The GPU system Mist [230] has 54
nodes, each with 32 IBM Power9 cores with 256GB RAM and 4 NVIDIA V100 GPUs with 32GB
memory and NVLink in between. Nodes are connected via InfiniBand EDR. (2) The GPU cluster of
Amazon Web Services (AWS) P3 and P2 instances, in which each node of P3.16xlarge is equipped
with 8 NVIDIA V100 with 32 GB memory connected via NVLink and P2.8xlarge has 8 K80 GPUs
with 12 GB memory.

Software. We use PyTorch 1.7.1, CUDA 10.2, CUDNN 7.6.5, and NCCL 2.7.8.
Training parameters. We train ResNet-50 for 50 epochs for HyLo and KAISA, and 90 epochs

for SGD with a batch size of 80 per GPU, similar to [209]. We use a similar approach to [209] and
train U-Net for 30 epochs for HyLo and KAISA and 50 epochs for ADAM with a batch size of 16
per GPU. ResNet-32 is trained for 100 epochs for HyLo and KAISA, and 200 for SGD with a batch
size of 128 per GPU, similar to [209]. DenseNet and 3C1F models are trained for 60 epochs with a
batch size of 128. We use momentum, and tune the learning rate and weight decay for all methods.
For HyLo and KAISA damping is tuned. All the methods except SGD update the second-order
information every few iterations. The frequency of the update for HyLo is similar to that of KAISA
and is chosen according to the authors’ default parameters for KFAC, EKFAC, and KBFGS-L. We
choose the parameter r in KID and KIS as 10% of the global batch size in all experiments unless
otherwise stated.

6.5.2 Single-GPU Setting

This section shows the performance of HyLo on a single-GPU for smaller models DenseNet and 3C1F.
We compare HyLo to KFAC, EKFAC, KBFGS-L, and SGD. In order to demonstrate the performance
of HyLo, we compare the single-GPU implementation of these methods for small batch sizes.
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Figure 6.4: Test accuracy comparison between HyLo and KFAC, EKFAC, KBFGS-L and SGD for a)
DenseNet b) 3C1F models on single-GPU. The dotted line shows the target metric.

Figure 6.4a shows the test accuracy vs. time on DenseNet model. HyLo converges to the target
test accuracy of 75% in 36.9 minutes while KFAC and EKFAC achieve an accuracy of 74.2% in 50
minutes. Both KBFGS-L and SGD, respectively, achieve a lower accuracy of 73.2% and 73% with a
time-to-convergence of 40.8 and 38 minutes. HyLo outperforms all methods in accuracy and is 1.4×
faster than KFAC.

To further demonstrate the generalization performance of HyLo, we compare its test accuracy to
KFAC, EKFAC, KBFGS-L, and SGD for the 3C1F model tested on Fashion-MNIST in Figure 6.4b.
HyLo achieves the target accuracy and outperforms KBFGS-L with a margin of 1.5% and KFAC
and EKFAC with 0.95%. HyLo also accelerates the end-to-end training time up to 3× compared to
KFAC and EKFAC.

6.5.3 Multi-GPU Setting

To demonstrate the performance of HyLo at scale, we conduct experiments on ResNet-50, U-Net, and
ResNet-32 on up to 64 GPUs and compare HyLo with KAISA and SGD. First, we show the end-to-end
accuracy and time-to-convergence and then analyze HyLo’s performance with communication and
computation cost breakdown.

Accuracy and time-to-convergence. Figure 6.5a compares the test accuracy of HyLo to
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(a) ResNet-50 (b) U-Net

(c) ResNet-32

Figure 6.5: Comparison of test accuracy vs time between HyLo, KAISA and SGD on ResNet-50,
U-Net and ResNet-32. The dotted line is the target accuracy.

KAISA and SGD for ResNet-50 model on 64 GPUs. HyLo converges to the target accuracy in 64.8
minutes which is 1.4× faster than KAISA with 93.2 minutes and 1.7× faster than SGD with 106.7
minutes. We also show the test accuracy curve w.r.t epochs in Figure 6.6a. HyLo improved the
convergence and outperforms KAISA and SGD in per-epoch accuracy.

HyLo outperforms KAISA and ADAM with a large factor for U-Net and ResNet-32 models as
shown in Figure 6.5b and Figure 6.5c. For U-Net, the time-to-convergence for HyLo is 480s which is
2.4× and 1.6× faster than ADAM and KAISA respectively. For ResNet-32, HyLo reduces the training
time by factors 2.1× and 1.6× compared to KAISA and SGD. Figure 6.6c and Figure 6.6b compare
the per-epoch accuracy of HyLo with KAISA and SGD on ResNet-32 and U-Net. For ResNet-32,
HyLo shows a better convergence compared to SGD and outperforms KAISA in per-epoch accuracy.

Performance analysis. We compare the cost of different steps involved in HyLo and KAISA
to show the advantage of HyLo when distributed. HyLo and KAISA on ResNet-50 are trained on
ImageNet-1k on 64 GPUs and ResNet-32 for CIFAR-10 is on 32 GPUS. Even though HyLo is a
hybrid approach, we intentionally report separate times for its KID and KIS methods to further
examine their computation and communication costs. The computation time consists of the time
for factorization and inversion steps and the communication time includes the gather and broadcast
steps.

Computation cost. HyLo reduces the factorization time compared to KAISA by 27× for KID
and 350× for KIS on ResNet-50, as shown in Figure 6.7a. The large speedup of KIS compared to
KAISA is due to its low-cost norm-based sampling which is efficiently computed with algorithm 6.3.
The KID iterations involve interpolative decomposition and hence have a higher execution time.
HyLo also reduces the inversion time to 3ms which is ∼135× less than KAISA with 410ms. As
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(a) ResNet-50 (b) U-Net

(c) ResNet-32

Figure 6.6: Comparison of test accuracy vs epoch between HyLo, KAISA, and SGD on ResNet-50,
U-Net, and ResNet-32. The dotted line is the target accuracy.

shown in Figure 6.2, ResNet-50 has large layers and hence KAISA’s inversion becomes inefficient.
Figure 6.7b shows that the speedups gained from HyLo are more significant for U-Net model in which
the inversion cost is reduced to 1.5ms which is 600× less than KAISA.

HyLo also reduces the computation time when the model has layers with smaller dimensions. As
shown in Figure 6.7c, the time of the factorization and inversion steps for KID are 6ms and 7ms
which are 9× and 47× faster than that of KAISA. The speedups gained on ResNet-32 are relatively
smaller compared to ResNet-50. This correlates with the observation in Figure 6.2 (which shows the
layer dimension distribution) that ResNet-50 has larger layers.

Communication cost. The time for communicating the factors in the gather step is reduced by a
factor of 9.4× for KID and 10.7× for KIS compared to KAISA on ResNet-50, as shown in Figure 6.7a.
The KID method transfers three matrices, i.e., KID-factors, per layer and hence has a slightly higher
communication time in the gather step while KIS only communicates two matrices per layer. Finally,
we observe that the dominant communication time is in the broadcast step, with 18ms for KID and
13ms for KIS which are 36× and 48× less than that of KAISA with 664ms. Figure 6.7b shows the
communication time breakdown of HyLo and KAISA on U-Net. The time for the gather step in
HyLo is ∼1ms which is ∼20× less than KAISA. HyLo reduces the communication cost of broadcast
step 8× compared to KAISA. Figure 6.7c shows the communication time breakdown of HyLo and
KAISA for ResNet-32. The gather time is reduced compared to KAISA by factors 2.5× and 4× for
KID and KIS methods. Both KID and KIS have similar times in the broadcast step and improve
over KAISA by a factor of 2.1×.

Scaling. To demonstrate the scalability of HyLo, Similar to [209], we report the projected
end-to-end training time speedup for HyLo over SGD in Figure 6.8a. We measure the average time-
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Figure 6.7: Computation and communication time breakdown for HyLo and KAISA on ResNet-50,
U-Net, and ResNet-32 models. The computation time is measured for the factorization and inversion
steps and communication time includes the gather and broadcast times.
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(a) Speedup on ResNet-50. (b) Speedup on ResNet-32.

(c) Scalability on ResNet-50 and ResNet-32.

Figure 6.8: The speedup of HyLo over SGD for a) ResNet-50 b) ResNet-32 model on different number
of GPUs, r is the rank parameter, c) shows the scalability of HyLo on ResNet-50 and ResNet-32
models up to 64 GPUs.
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per-epoch for HyLo and SGD on models that execute on a large number of GPUs, i.e., ResNet-50
and ResNet-32; the number of GPUs is varied from 8 to 64 for ResNet-50 and 4 to 32 for ResNet-32.
Also, to show the effect of the Kernel matrix rank on the scaling, r is set (See algorithm 6.1) to 10%,
20%, and 40% of the global batch size. For ResNet-50, we project the training time to 90 epochs
in SGD and 50 epochs in HyLo, and for ResNet-32 the training time is projected to 200 and 100
epochs for SGD and HyLo respectively. The frequency of HyLo updates is scaled inversely with
the number of GPUs to keep the number of updates per training sample constant. The speedup
of HyLo improves over SGD with an increasing number of GPUs. HyLo achieves ∼1.9× speedup
For ResNet-32 and ∼1.7 × speedup for ResNet-50 model on 32 and 64 GPUs. For a more accurate
scalability analysis, in Figure 6.8c we show the running time of HyLo vs its single-GPU time for
varying numbers of GPUs on ResNet-50 and ResNet-32 models. Figure 6.8c shows that HyLo scales
superlinearly for ResNet-50 and linearly for ResNet-32.

Analysis of rank and gradient norm. HyLo is built on the assumption that the Kernel matrix
has a low-rank structure, this property allows us to replace the per-sample inputs and gradients
matrices with KID/KIS-factors. The following shows that the kernel matrix has a low-rank structure
when global batch sizes are large. We also provide an analysis of our switching-based method which
decides how often to choose KID versus KIS.

Analysis of kernel matrix rank. For different batch sizes, we analyze the rank distribution of the
kernel matrix on ResNet-50 and ResNet-32. We compute the eigenvalue decomposition of the kernel
matrix for each layer and report its numerical rank, i.e., the number of eigenvalues that contribute
to 90% of their sum. The global batch size ranges from 512 to 4096 for ResNet-50 and ResNet-32.
The kernel matrix maintains a low-rank structure for all global batch sizes. Figure 6.9a shows the
rank distribution on ResNet-50, the median rank is 104, 164, 247, and 351 which respectively, show a
ratio of 20%, 16%, 12%, and 8.5 % of the global batch size. Figure 6.9b for ResNet-32 shows that on
a large global batch size of 4096 we only require ∼2% of the samples to approximate the matrix as
the median rank is small, 89, compared to the batch size.

Analysis of switching method. We provide an analysis of how often HyLo chooses KID versus
KIS. We compute the norm of the gradient at each epoch on the ResNet-32 model and report in
Figure 6.10 for various layers. The gradient norm changes rapidly in the initial epochs and also
after the learning rate decays at epochs 35 and 75. Hence, HyLo chooses KID over KIS in 20% of
epochs, i.e., 1-10, 35-39, and 75-79. A similar analysis leads to choosing KID in 30% of the epochs
on ResNet-50, in particular epochs 1-10 and 25-29.

6.6 Related Work

Second-order methods specifically Natural Gradient Descent (NGD) [95, 231–233] can accelerate
training by improving the convergence rate of DNNs, specifically, exact NGD [101] methods have
demonstrated improved convergence compared to first-order techniques such as SGD [85]. Zhang et
al. [101] extend NGD to deep nonlinear networks with non-smooth activations and show that NGD
converges to the global optimum with a linear rate. However, their method fails to scale to large or
even moderate size models primarily because it relies heavily on backpropagating Jacobian matrices,
which scale with the network’s output dimension [97]. In [53] the authors use Woodbury identity for
the inversion of the Fisher matrix and propose a unified framework for subsampled Gauss-Newton
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Figure 6.9: Distribution of the rank of kernel matrix on a) ResNet-50 and b) ResNet-32. The kernel
matrix has a low-rank structure for all global batch sizes.

and NGD methods. Their framework is targeted at fully-connected networks and relies on empirical
Fisher. This requires extra forward-backward passes to perform parameter updates [97,234].

Approximate NGD approaches such as [32,54,98,235–237] attempt to improve the overall execution
time of NGD with FIM inverse approximation. For example, KFAC [54] approximates each block
inverse using the Kronecker product of two smaller matrices, i.e., Kronecker factors. However, these
factors have large sizes for wide layers and hence their inversion is expensive. EKFAC [98] improves
the approximation used in KFAC by rescaling the Kronecker factors with a diagonal matrix obtained
via costly singular value decompositions. Other work such as KBFGS [235] further estimates the
inverse of Kronecker factors using low-rank BFGS type updates. WoodFisher [238] estimates the
empirical FIM block inverses using rank-one updates, however, this estimation will not contain
enough useful curvature information to produce a good search direction [33]. Goldfarb et al. [235]
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Figure 6.10: Gradient norms throughout ResNet-32 training.

follow the framework for stochastic quasi-Newton methods and prove that KBFGS converges with a
sublinear rate for a network with bounded activation functions.

Distributed implementations of KFAC methods have been recently explored in [7,89,209,213,214,
239]. Ba et al. [89] implement an asynchronous distributed KFAC on a parameter server. Their work
assigns the factorization step in KFAC to some of the workers while others compute inversions. Their
approach leads to a 5.9% accuracy loss on ImageNet-1k compared to state-of-the-art target accuracies.
Osawa et al. [7] perform the factorization step on all workers and compute the factor inverses using
a model-parallel approach. They apply mixed-precision computations (FP32 and FP16) and use
symmetry-aware communication to reduce the volume of transferred data by only sending the upper
triangular part of Kronecker factors. Pauloski et al. [214] use a similar approach to [7] and implement
KFAC layer-wise, their method achieves the MLPerf target accuracy and improves training time
over SGD. This work was further improved in [213], by applying a custom 21-bit floating-point
format for collective communications amongst GPUs and overlapping the gather/broadcast steps
with the backward pass computations. KAISA [209] combines previous distributed KFAC strategies
into one hybrid approach using a tunable memory footprint approach to balance the memory and
communication costs. Ma et al. [239] provides an extensive analysis of distributed KFAC and shows
that KFAC does not exhibit good scalability behavior and loses accuracy on large batch sizes.

6.7 Conclusion

In this work, we propose a distributed algorithm and implementation for Natural Gradient Decent
methods which we call HyLo. HyLo is based on a gradient-based switching approach that decides
when to use a Khatri-Rao-based interpolative decomposition method and when to use importance
sampling. As a result, the computation and communication costs associated with computing the
Fisher matrix inverse in NGD methods are significantly reduced on distributed platforms. HyLo
also supports convolutional neural networks as we extend the SNGD formulation to support CNNs.
Our results show that HyLo outperforms state-of-the-art implementations of NGD, such as KFAC,
KAISA, EKFAC, KBFGS-L, on both single-GPU and multi-GPU platforms.
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Limitations. In this work, we approximate the Fisher matrix for a batch of data. This stochastic
approximation can slow down the convergence when the dataset is very large. Moving average methods
can accumulate the second-order information and hence improve the convergence. Nonetheless, it
is still unclear how approximate NGD methods affect the convergence in theory. Moreover, in our
implementations, we perform many small matrix-matrix multiplications during the preconditions
step, which can slow down the training on GPUs. Therefore, batching the small matrix-matrix
multiplications can ensure better utilization of GPU and hence improved overall performance.



Chapter 7

Conclusion and Future Works

This chapter summarizes the contributions of this thesis and possibilities for future work in this
research area.

7.1 Summary

In this thesis, we study the second-order optimization methods in machine learning. Specifically,
this thesis introduces communication-efficient second-order optimization algorithms, in particular,
the class of quasi-Newton and natural gradient descent optimization methods, deployed on parallel
systems. The summary of each chapter is as follows:

• In chapter 3, we reduce the communication cost of a quasi-Newton method by reformulating
the optimization algorithm using iteration overlapping techniques. The proposed algorithm,
called RC-SFISTA, is implemented on both MPI and Spark and outperforms state-of-the-art
framework ProxCoCoA up to 12 times on 256 processors.

• In chapter 4, we develop a quasi-Newton optimization method that reduces the communication
cost on distributed memory systems by using asynchronous communications. The proposed
method, called DAve-QN, achieves a superlinear local convergence rate.

• In chapter 5, We develop a novel framework to implement and dispatch asynchronous optimiza-
tion methods with custom asynchronous execution models on cloud and distributed memory
platforms. Our framework, called ASYNC, provides the necessary tools and API to support
both first-order and second-order optimization methods with communication models ranging
from synchronous to fully asynchronous. ASYNC outperforms the implementations in Spark
up to 4 times on a distributed system with 32 workers.

• In chapter 6, we develop a scalable natural gradient descent method, called HyLo, for training
deep neural networks on distributed graphical processing units using low-rank approximations
and random sampling techniques. We provide an efficient distributed implementation of HyLo
which is up to 2.1 times faster than the state-of-the-art distributed implementation of the
second-order methods for deep neural networks.
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7.2 Future Directions

• In chapter 6, we develop second-order methods using sparsification techniques such as low-rank
approximations. In a different direction, quantization methods can be used to reduce the amount
of data transferred by quantizing it with a fixed number of bits per dimension. Currently,
quantization techniques have not been investigated for the second-order methods. Especially,
stochastic quantization techniques are gaining attention in training deep neural networks and
can be further extended to second-order optimization methods [41,240,241].

• Future works in this area could involve further analysis of second-order methods on hybrid
distributed-shared memory architectures. The communication cost in these systems involves
both the cost of accessing shared memory and transferring data via the network. Hybrid
architectures are becoming more prevalent in recent years because of the increasing popularity
of multi-GPU architectures. Designing novel optimization algorithms on these systems require
a thorough understanding of the memory hierarchy and the cost of data transfers between these
levels. Moreover, recent multi-GPU systems support mixed-precision operations. Therefore,
utilizing the new features of these systems can accelerate the performance of optimization
methods for many machine learning applications, especially since it has been shown that ML
algorithms are robust to round-off errors [242].

• Convergence properties of many approximate second-order methods are still unknown. For
example, the only convergence analysis of approximate NGD methods was recently proposed
for two layers neural networks [34] and is limited to fully-connected layers. Moreover, the
curvature information is obtained partially on a subset of data which introduces randomness in
the Hessian. It is still unclear how this randomness plays role in training deep neural networks.
Analyzing the convergence properties of approximate second-order methods can lead to a better
understanding of how these methods work and open new ways to design novel methods.



Appendix A

Appendix for Reducing
Communication in Proximal Newton
Methods

A.1 Convergence Proofs for SFISTA

In this section, we show the convergence proof of SFISTA which is stated in Theorem 1.1. First, we
consider the full gradient update as:

w̄n = Proxγ(vn − γ∇f(vn)) (A.1)

Let’s define εn = ∇f̂(vn)−∇f(vn), therefore, E[εn] = 0. Let δn = vn−wn
γ be the proximal mapping.

Let’s define zn as follows:
zn = tnwn + (1− tn)wn−1 (A.2)

Lemma 1. Let φ(w) be a µ-strongly convex function and w∗ = argmin
w∈Rd

φ(w), then:

φ(w) ≥ φ(w∗) +
µ

2
‖w − w∗‖2 (A.3)

Lemma 2. For n ≥ 0, F is quadratically bounded from below:

F (w) ≥F (wn) + 〈δn, w − vn〉+ 〈εn, wn − w〉

+γ(1− γL

2
)‖δn‖2

(A.4)

Lemma 3. Let g : Rd → R be a convex function. Then for every x, y ∈ dom(g):

‖Proxγ(x)− Proxγ(y)‖ ≤ ‖x− y‖ (A.5)
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Lemma 4. Assume we estimate the gradient using (3.9), then based on [185]:

E[‖εn‖2] ≤ 1

m̄

m− m̄
m− 1

(2L2‖vn − wn‖2

+8L(F (wn)− F (w∗) + F (ŵs)− F (w∗)))
(A.6)

where expectation is taken with respect to In.

Lemma 5. Assume that for n ≥ 1 and γ < 1
L , then

F (wn)− F (w) ≤ (1− t−1
n )(F (wn−1)− F (w))

− γ

2
(1− γL)‖δn‖2 + γ‖εn‖2

+
1

2γt2n
(‖w − zn−1‖2 − ‖w − zn‖2)

+ 〈εn, t−1
n (w − zn−1) + vn − w̄n〉

(A.7)

Proof. Define φn(w) = 〈δn, w − vn〉 + 1
2γtn
‖w − zn−1‖2. It’s easy to see that zn = argmin

w∈Rd
φn(w).

Also, φn(w) is 1
γtn

-strongly convex. Therefore by applying Lemma 1 and Lemma 2:

φn(zn) ≤ φn(w)− 1

2γtn
‖w − zn‖2

= 〈δn, w − vn〉+
1

2γtn
‖w − zn−1‖2 −

1

2γtn
‖w − zn‖2

≤ F (w)− F (wn) + 〈εn, w − wn〉

− γ(1− γL

2
)‖δn‖2 +

1

2γtn
‖w − zn−1‖2

− 1

2γtn
‖w − zn‖2

(A.8)

Therefore by plugging φn(zn) in (A.8),

F (wn) ≤ F (w)+ < δn, vn − zn > −
1

2γtn
‖zn − zn−1‖2

+ < εn, w − wn > −γ(1− γL

2
)‖δn‖2

+
1

2γtn
‖w − zn−1‖2 −

1

2γtn
‖w − zn‖2

(A.9)

and now by using Lemma 3 and setting w = wn−1,

F (wn)− F (wn−1) ≤〈δn, vn − wn−1〉+ 〈εn, wn−1 − wn〉

− γ(1− γL

2
)‖δn‖2

(A.10)
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by multiplying (A.9) by t−1
n and (A.10) by (1− t−1

n ) and adding them together:

F (wn)− F (w) ≤ (1− t−1
n )(F (wn−1)− F (w))

− γ(1− γL

2
)‖δn‖2 −

1

2γt2n
‖zn − zn−1‖2

+
1

2γt2n
(‖w − zn−1‖2 − ‖w − zn‖2) +A+ B

(A.11)

where A = 〈δn, t−1
n (vn−zn)+(1−t−1

n )(vn−wn−1))〉 and B = t−1
n 〈εn, w−wn〉+(1−t−1

n )〈εn, wn−1−
wn〉 .

Because of the update rule vn = (1−t−1
n )wn−1+t−1

n zn−1 and considering that zn−zn−1 = −tnγδn:

A = 〈δn, t−1
n (vn − zn−1) + (1− t−1

n )(vn − wn−1))〉

+ 〈δn, t−1
n (zn−1 − zn)〉

= 〈δn, t−1
n (zn−1 − zn)〉

= γ‖δn‖2

(A.12)

and using vn update rule, Lemma 3 and Cauchy-Schwartz inequality ,

B = t−1
n 〈εn, w − wn〉+ (1− t−1

n )〈εn, wn−1 − wn〉

= 〈εn, t−1
n w + (1− t−1

n )wn−1 − vn + vn − wn〉

= 〈εn, t−1
n (w − zn−1) + vn − w̄n〉+ 〈εn, w̄n − wn〉

≤ 〈εn, t−1
n (w − zn−1) + vn − w̄n〉+ γ‖εn‖2

(A.13)

by plugging (A.12) and (A.13) in (A.11) we get the theorem.

A.1.1 Proof of Theorem 1

Since the gradient estimation is unbiased, i.e. E[εn] = 0, clearly E[〈εn, t−1
n (w∗−zn−1)+vn− w̄n〉] = 0,

therefore by setting w = w∗ and taking expectation of both sides of (A.7) and using (A.6):

E[F (wn)]− F (w∗) ≤ (1− t−1
n )(E[F (wn−1)]− F (w∗))

+
1

2γt2n
(E[‖w∗ − zn−1‖2]− E[‖w∗ − zn‖2])

+ E
[
(−γ

2
(1− γL) +

2L2γ3

m̄

m− m̄
m− 1

)‖δn‖2
]

+ E
[

8γL(m− m̄)

m̄(m− 1)
(F (wn)− F (w∗)

+ F (ŵs)− F (w∗))

]
(A.14)
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now by setting coefficients of ‖δn‖2 to be non-positive we have:

γ−1 ≥ max

(
L

2
+
√

∆, L

)
(A.15)

where ∆ = 1
4 + 4L2(m−m̄)

m̄(m−1) . If γ−1 > 8L(m−m̄)
m̄(m−1) then,

β =
8γL(m− m̄)

m̄(m− 1)
< 1 (A.16)

now by noticing that t2n(1− t−1
n ) ≤ t2n−1

E[F (wn)]− F (w∗) ≤
t2n−1

t2n(1− β)
(E[F (wn−1)]− F (w∗))

+
1

2γt2n(1− β)
(E[‖w∗ − zn−1‖2]− E[‖w∗ − zn‖2])

+
β

1− β
E [F (ŵs)− F (w∗)]

(A.17)

therefore in order to make sure that t2n−1

t2n(1−β) < 1, we should set β < 1− t2N−1

t2N
which using (A.16) :

γ <

(
1−

t2N−1

t2N

)
m̄(m− 1)

8L(m− m̄)
(A.18)

The equations (A.15) and (A.18) together are the conditions on step size. Finally :

E[F (wN )]− F (w∗) ≤ (
1

t2N (1− β)N
)(E[F (ŵs)]− F (w∗))

+
D

2γt2N (1− β)N

(A.19)
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Appendix for Asynchronous
Quasi-Newton Method on
Distributed Memory Systems

B.1 DAve-QN Method with Exact Time Indices

We show a detailed version of the DAve-QN algorithm in algorithm B.1.

Algorithm B.1 DAve-QN

Master:

Initialize x0, B0
i , (B0)−1 = (

∑n
i=1 B

0
i )
−1,

u0 =
∑n
i=1 B

0
ix

0, g0 =
∑n
i=1∇fi(x0)

for t = 1 to T-1 do
If a worker sends an update:
Receive ∆ut, y, q, αt, βt from it
ut = ut−1 + ∆ut

gt = gt−1 + y
vt = (Bt−1)−1y

Ut = (Bt−1)−1 − vtvt>

αt+vt>y
wt = Utq

(Bt)−1 = Ut + wtwt>

βt−qTwt
xt = (Bt)−1(ut − gt)
Send xt to the slave in return

Interrupt all slaves
Output xT

Slave i:

Initialize x0
i = x0, B0

i

while not interrupted by master do
Receive xt−D

t
i at moment t−Dt

i

Perform below steps by moment t− dti
zti = z

t−dti
i = xt−D

t
i

sti = s
t−dti
i = zt−d

t
i − z

t−Dti
i

yti = y
t−dti
i = ∇fi(xt−d

t
i)−∇fi(zti)

qti = q
t−dti
i = B

t−Dti
i s

t−dti
i

αt−d
t
i = ytTi sti

βt−d
t
i = (s

t−dti
i )TB

t−Dti
i sti

B
t−dti
i = B

t−Dti
i +

ytiy
tT
i

αt−d
t
i
− qtiq

tT
i

βt−d
t
i

∆ut−d
t
i = B

t−dti
i z

t−dti
i −B

t−Dti
i z

t−Dti
i

Send ∆ut−d
t
i ,y

t−dti
i ,q

t−dti
i , αt−d

t
i , βt−d

t
i

to the master at moment t− dti
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B.2 Proofs

In this section, we show the proofs for Lemmas and Theorems of DAve-QN.

B.2.1 Proof of Lemma 1

Proof. To verify the claim, we need to show that ut =
∑n
i=1 B

t
iz
t
i and gt =

∑n
i=1∇fi(zti). They

follow from our delayed vectors notation zti = z
t−dti
i and how ∆ut−d

t
i and y

t−dti
i are computed by the

corresponding worker.

B.2.2 Proof of Lemma 2

To prove the claim in Lemma 2 we first prove the following intermediate lemma using the result of
Lemma 5.2 in [177].

Lemma 4. Consider the proposed method outlined in Algorithm B.1. Let M be a nonsingular
symmetric matrix such that

‖Myti −M−1sti‖ ≤ β‖M−1sti‖, (B.1)

for some β ∈ [0, 1/3] and vectors sti and yti in Rp with sti 6= 0. Let’s denote i as the index that
has been updated at time t. Then, there exist positive constants α, α1, and α2 such that, for any
symmetric A ∈ Rp×p we have,

‖Bt
i −A‖M ≤

[
(1− αθ2)1/2 + α1

‖My
t−Dti
i −M−1s

t−Dti
i ‖

‖M−1s
t−Dti
i ‖

]
‖Bt−Dti

i −A‖M

+ α2
‖yt−D

t
i

i −As
t−Dti
i ‖

‖M−1s
t−Dti
i ‖

, (B.2)

where α = (1− 2β)/(1− β2) ∈ [3/8, 1], α1 = 2.5(1− β)−1, α2 = 2(1 + 2
√
p)‖M‖F, and

θ =
‖M(B

t−Dti
i −A)s

t−Dti
i ‖

‖Bt−Dti
i −A‖M‖M−1s

t−Dti
i ‖

for Bt−Dti
i 6= A, θ = 0 for Bt−Dti

i = A. (B.3)

Proof. By definition of delays dti, the function fi was updated at step t− dti and Bt−1
i is equal to

B
t−Dti
i . Considering this observation and the result of Lemma 5.2 in [177], the claim follows.

Note that the result in Lemma 4 characterizes an upper bound on the difference between the
Hessian approximation matrices Bt

i and B
t−Dti
i and any positive definite matrix A. Let us show

that matrices M = ∇2fi(x
∗)−1/2 and A = ∇2fi(x

∗) satisfy the conditions of Lemma 4. By strong
convexity of fi we have ‖∇2fi(x

∗)1/2s
t−Dti
i ‖ ≥ √µ‖st−D

t
i

i ‖. Combined with Assumption 2, it gives
that

‖yt−D
t
i

i −∇2fi(x
∗)st−D

t
i

i ‖
‖∇2fi(x∗)1/2s

t−Dti
i ‖

≤ L̃‖st−D
t
i

i ‖max{‖zt−D
t
i

i − x∗‖, ‖zti − x∗‖}
√
µ‖st−D

t
i

i ‖
=

L̃
√
µ
σti (B.4)

This observation implies that the left hand side of the condition in (B.1) for M = ∇2fi(x
∗)−1/2 is
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bounded above by

‖My
t−Dti
i −M−1s

t−Dti
i ‖

‖M−1s
t−Dti
i ‖

≤ ‖∇
2fi(x

∗)−1/2‖‖yt−D
t
i

i −∇2fi(x
∗)st−D

t
i

i ‖
‖∇2fi(x∗)1/2s

t−Dti
i ‖

≤ L̃

µ
σti (B.5)

Thus, the condition in (B.1) is satisfied since L̃σti/µ < 1/3. Replacing the upper bounds in (B.4) and
(B.5) into the expression in (B.2) implies the claim in (4.20) with

β =
L̃

µ
σti , α =

1− 2β

1− β2
, α3 =

5L̃

2µ(1− β)
, α4 =

2(1 + 2
√
p)L̃

√
µ

‖∇2fi(x
∗)−

1
2 ‖F, (B.6)

and the proof is complete.

B.2.3 Proof of Lemma 3

We first state the following result from Lemma 6 in [164], which shows an upper bound for the error
‖xt − x∗‖ in terms of the gap between the delayed variables zti and the optimal solution x∗ and the
difference between the Newton direction ∇2fi(x

∗) (zti − x∗) and the proposed quasi-Newton direction
Bt
i (zti − x∗).

Lemma 5. If Assumptions 1 and 2 hold, then the sequence of iterates generated by Algorithm B.1
satisfies

‖xt − x∗‖ ≤ L̃Γt

n

n∑
i=1

∥∥zti − x∗
∥∥2

+
Γt

n

n∑
i=1

∥∥(Bt
i −∇2fi(x

∗)
) (

zti − x∗
)∥∥ , (B.7)

where Γt := ‖((1/n)
∑n
i=1 B

t
i)
−1‖.

We use the result in Lemma 5 to prove the claim of Lemma 3. We will prove the claimed
convergence rate in Lemma 3together with an additional claim

∥∥Bt
i −∇2fi(x

∗)
∥∥
M
≤ 2δ

by inductions on m and on t ∈ [Tm, Tm+1). The base case of our induction is m = 0 and t = 0, which
is the initialization step, so let us start with it.

Since all norms in finite dimensional spaces are equivalent, there exists a constant η > 0 such that
‖A‖ ≤ η‖A‖M for all A. Define γ := 1/µ and d := maxm(Tm+1 − Tm), and assume that ε(r) = ε

and δ(r) = δ are chosen such that

(2α3δ + α4)
dε

1− r
≤ δ and γ(1 + r)[L̃ε+ 2ηδ] ≤ r, (B.8)

where α3 and α4 are the constants from Lemma 2. As ‖B0
i −∇2fi(x

∗)‖M ≤ δ, we also have

‖B0
i −∇2fi(x

∗)‖ ≤ ηδ.

Therefore, by triangle inequality from ‖∇2fi(x
∗)‖ ≤ L we obtain ‖B0

i ‖ ≤ ηδ+L, so ‖(1/n)
∑n
i=1 B

0
i ‖ ≤

ηδ + L. The second part of inequality (B.8) also implies 2γ(1 + r)ηδ ≤ r. Moreover, it holds that
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‖B0
i − ∇2fi(x

∗)‖ ≤ ηδ < 2ηδ and by Assumption 1 γ ≥ ‖∇2fi(x
∗)−1‖, so we obtain by Banach

Lemma that

‖(B0
i )
−1‖ ≤ (1 + r)γ.

We formally prove this result in the following lemma.

Lemma 6. If the Hessian approximation Bi satisfies the inequality ‖Bi − ∇2fi(x
∗)‖ ≤ 2ηδ and

‖∇2fi(x
∗)−1‖ ≤ γ, then we have ‖B−1

i ‖ ≤ (1 + r)γ.

Proof. Note that according to Banach Lemma, if a matrix A satisfies the inequality ‖A− I‖ ≤ 1,
then it holds ‖A−1‖ ≤ 1

1−‖A−I‖ .

We first show that ‖∇2fi(x
∗)−1/2Bi∇2fi(x

∗)−1/2 − I‖ ≤ 1. To do so, note that

‖∇2fi(x
∗)−1/2Bi∇2fi(x

∗)−1/2 − I‖ ≤ ‖∇2fi(x
∗)−1/2‖‖Bi −∇2fi(x

∗)‖‖∇2fi(x
∗)−1/2‖

≤ 2ηδγ

≤ r

r + 1

< 1. (B.9)

Now using this result and Banach Lemma we can show that

‖∇2fi(x
∗)1/2B−1

i ∇
2fi(x

∗)1/2‖ ≤ 1

1− ‖∇2fi(x∗)−1/2Bi∇2fi(x∗)−1/2 − I‖

≤ 1

1− r
r+1

= 1 + r (B.10)

Further, we know that

‖∇2fi(x
∗)1/2B−1

i ∇
2fi(x

∗)1/2‖ ≥ ‖B
−1
i ‖
γ

(B.11)

By combining these results we obtain that

‖B−1
i ‖ ≤ (1 + r)γ. (B.12)

Similarly, for matrix ((1/n)
∑n
i=1 B

0
i )
−1 we get from ‖(1/n)

∑n
i=1 B

0
i − (1/n)

∑n
i=1∇2fi(x

∗)‖ ≤
(1/n)

∑n
i=1 ‖B0

i −∇2fi(x
∗)‖ ≤ ηδ and ‖∇2f(x∗)−1‖ ≤ γ that∥∥∥∥∥∥

(
1

n

n∑
i=1

B0
i

)−1
∥∥∥∥∥∥ ≤ (1 + r)γ.
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We have by Lemma 2 and induction hypothesis

∥∥Bt
i −∇2fi(x

∗)
∥∥
M
−
∥∥∥Bt−Dti

i −∇2fi(x
∗)
∥∥∥
M
≤ α3σ

t−Dti
i

∥∥∥Bt−Dti
i −∇2fi(x

∗)
∥∥∥
M

+ α4σ
t−Dti
i

≤
(
α3

∥∥∥Bt−Dti
i −∇2fi(x

∗)
∥∥∥
M

+ α4

)
rm−1ε

≤ (2α3δ + α4) rm−1ε,

By summing this inequality over all moments in the current epoch when worker i performed its
update, we obtain that

∥∥Bt
i −∇2fi(x

∗)
∥∥
M
−
∥∥∥∥BTm−dTmi

i −∇2fi(x
∗)

∥∥∥∥
M

≤ (2α3δ + α4) drm−1ε,

Summing the new bound again, but this time over all passed epoch, we obtain

∥∥Bt
i −∇2fi(x

∗)
∥∥
M
−
∥∥B0

i −∇2fi(x
∗)
∥∥
M
≤ (2α3δ + α4) dε

m−1∑
k=0

rk ≤ (2α3δ + α4) dε

1− r
≤ δ.

Therefore,
∥∥Bt

i −∇2fi(x
∗)
∥∥
M
≤ 2δ. By using the Banach argument again, we can show that

‖( 1
n

∑n
i=1 B

t
i)
−1‖ ≤ (1+r)γ. Using this result, for any t ∈ [Tm, Tm+1) we have zti = xt−D

t
i ∈ [Tm−1, t)

and we can write

‖xt − x∗‖ ≤ (1 + r)γ

[
L̃

n

n∑
i=1

∥∥zti − x∗
∥∥2

+
1

n

n∑
i=1

∥∥[Bt
i −∇2fi(x

∗)
] (

zti − x∗
)∥∥]

≤ (1 + r)γ
[
L̃ε+ 2ηδ

]
max
i
‖zti − x∗‖

≤ rmax
i
‖zti − x∗‖

≤ rm‖x0 − x∗‖. (B.13)

B.2.4 Proof of Theorem 1

Dividing both sides of (B.7) by (1/n)
∑n
i=1 ‖zti − x∗‖, we get

‖xt − x∗‖
1
n

∑n
i=1 ‖zti − x∗‖

≤ L̃Γt
n∑
i=1

‖zti − x∗‖2∑n
i=1 ‖zti − x∗‖

+ Γt
n∑
i=1

∥∥(Bt
i −∇2fi(x

∗)
)

(zti − x∗)
∥∥∑n

i=1 ‖zti − x∗‖
(B.14)

As every term in
∑n
i=1 ‖zti − x∗‖ is non-negative, the upper bound in (B.14) will remain valid if we

keep only one summand out of the whole sum in the denominators of the right-hand side, so

‖xt − x∗‖
1
n

∑n
i=1 ‖zti − x∗‖

≤ L̃Γt
n∑
i=1

‖zti − x∗‖2

‖zti − x∗‖
+ Γt

n∑
i=1

∥∥(Bt
i −∇2fi(x

∗)
)

(zti − x∗)
∥∥

‖zti − x∗‖

= L̃Γt
n∑
i=1

∥∥zti − x∗
∥∥+ Γt

n∑
i=1

∥∥(Bt
i −∇2fi(x

∗)
)

(zti − x∗)
∥∥

‖zti − x∗‖
. (B.15)

Now using the result in Lemma 5 of [164], the second sum in (B.15) converges to zero. Further,
Γt is bounded above by a positive constant. Hence, by computing the limit of both sides in (B.15)
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we obtain

lim
t→∞

‖xt − x∗‖
1
n

∑n
i=1 ‖zti − x∗‖

= 0.

Therefore, if T is big enough, for t > T we have

‖xt − x∗‖ ≤ 1

n

n∑
i=1

∥∥zti − x∗
∥∥ =

1

n

n∑
i=1

∥∥∥xt−Dtii − x∗
∥∥∥ ≤ max

i

∥∥∥xt−Dtii − x∗
∥∥∥ . (B.16)

Now, let t0 = t0(m) := min{t̃ ∈ [Tm+1, Tm+2) : ‖xt̃ − x∗‖ = maxt∈[Tm+1,Tm+2) ‖xt − x∗‖}. In other
words, t0 is the first moment in epoch m+ 1 attaining the maximal distance from x∗. Then, for all
t ∈ [Tm+1, t0) we have ‖xt − x∗‖ < ‖xt0 − x∗‖. Furthermore, from equation (B.16) and the fact that,
according to Proposition 1, t0 −Dt0

i ∈ [Tm, t0) we get

max
t∈[Tm+1,Tm+2)

‖xt − x∗‖ = ‖xt0 − x∗‖ ≤ max
i

∥∥∥∥xt0−Dt0ii − x∗
∥∥∥∥ ≤ max

t∈[Tm,t0)
‖xt − x∗‖.

Note that it can not happen that maxt∈[Tm,t0) ‖xt − x∗‖ = maxt∈[Tm+1,t0) ‖xt − x∗‖ as that would
mean that there exists a t̂ ∈ [Tm+1, t0) such that ‖xt̂ − x∗‖ ≥ ‖xt0 − x∗‖, which we made impossible
when defining t0. Then, the only option is that in fact

max
t∈[Tm,t0)

‖xt − x∗‖ = max
t∈[Tm,Tm+1)

‖xt − x∗‖.

Finally,

lim
t→∞

maxt∈[Tm+1,Tm+2) ‖xt − x∗‖
maxt∈[Tm,Tm+1) ‖xt − x∗‖

= lim
t→∞

‖xt0(m) − x∗‖
maxt∈[Tm,Tm+1) ‖xt − x∗‖

= lim
t→∞

‖xt0(m) − x∗‖
maxt∈[Tm,t0(m)) ‖xt − x∗‖

≤ lim
t→∞

‖xt0(m) − x∗‖
maxi ‖xt0(m)−Dt0(m)

i − x∗‖

≤ lim
t→∞

‖xt0(m) − x∗‖
1
n

∑n
i=1 ‖z

t0(m)
i − x∗‖

= 0,

where at the last step we used again the fact that zti = xt−D
t
i .

B.3 Implementation of DAve-QN

In Algorithm 4.1, we provide a simplified version of the DAve-QN in terms of notation and indices of
the variables, which illustrates how DAve-QN can be implemented from master’s and worker nodes’
side further. We observe the steps at which worker i is devoted to performing the update in (4.11).
Using the computed matrix Bi, node i evaluates the vector ∆u. Then, it sends the vectors ∆u,
yi, and qi as well as the scalars α and β to the master node. The master node uses the variation
vectors ∆u and y to update u and g. Then, it performs the update xt+1 = (Bt+1)−1

(
ut+1 − gt+1

)
by following the efficient procedure presented in (4.16)–(4.17).
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[119] Jakub Konečnỳ, Jie Liu, Peter Richtárik, and Martin Takáč. Mini-batch semi-stochastic
gradient descent in the proximal setting. IEEE Journal of Selected Topics in Signal Processing,
10(2):242–255, 2016.

[120] R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points—online stochastic gradient
for tensor decomposition. In Conference on Learning Theory, pages 797–842, 2015.



106 BIBLIOGRAPHY

[121] Mingyi Hong and Tsung-Hui Chang. Stochastic proximal gradient consensus over random
networks. IEEE Transactions on Signal Processing, 65(11):2933–2948, 2017.

[122] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. arXiv preprint arXiv:1606.04838, 2016.

[123] Atsushi Nitanda. Stochastic proximal gradient descent with acceleration techniques. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 27, pages 1574–1582. Curran Associates,
Inc., 2014.

[124] Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance
reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

[125] Jason D Lee, Yuekai Sun, and Michael A Saunders. Proximal newton-type methods for
minimizing composite functions. SIAM Journal on Optimization, 24(3):1420–1443, 2014.

[126] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of mathematical imaging and vision, 40(1):120–145, 2011.

[127] Dimitri P Bertsekas. Incremental proximal methods for large scale convex optimization.
Mathematical Programming, 129(2):163–195, 2011.

[128] Tong Tong Wu, Kenneth Lange, et al. Coordinate descent algorithms for lasso penalized
regression. The Annals of Applied Statistics, 2(1):224–244, 2008.

[129] Samuel H Fuller and Lynette I Millett. Computing performance: Game over or next level?
Computer, 44(1):31–38, 2011.

[130] James Demmel, Laura Grigori, Mark Hoemmen, and Julien Langou. Communication-optimal
parallel and sequential qr and lu factorizations. SIAM Journal on Scientific Computing,
34(1):A206–A239, 2012.

[131] Atsushi Nitanda. Stochastic proximal gradient descent with acceleration techniques. In Advances
in Neural Information Processing Systems, pages 1574–1582, 2014.

[132] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):27, 2011.

[133] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew Grimshaw,
Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D Peterson, et al. Xsede: accelerating
scientific discovery. Computing in Science & Engineering, 16(5):62–74, 2014.

[134] Stephen R Becker, Emmanuel J Candès, and Michael C Grant. Templates for convex cone
problems with applications to sparse signal recovery. Mathematical programming computation,
3(3):165–218, 2011.

[135] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies
Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al. Mllib: Machine learning in
apache spark. The Journal of Machine Learning Research, 17(1):1235–1241, 2016.



BIBLIOGRAPHY 107

[136] Saeed Soori, Konstantin Mishchenko, Aryan Mokhtari, Maryam Mehri Dehnavi, and Mert
Gurbuzbalaban. DAve-QN: A distributed averaged quasi-Newton method with local superlinear
convergence rate. In International Conference on Artificial Intelligence and Statistics, pages
1965–1976. PMLR, 2020.

[137] Lin Xiao, Adams Wei Yu, Qihang Lin, and Weizhu Chen. Dscovr: Randomized primal-dual
block coordinate algorithms for asynchronous distributed optimization. Journal of Machine
Learning Research, 20(43):1–58, 2019.

[138] Nuri Denizcan Vanli, Mert Gürbüzbalaban, and Asu Ozdaglar. Global convergence rate of
proximal incremental aggregated gradient methods. arXiv preprint arXiv:1608.01713, 2016.

[139] Mert Gürbüzbalaban, Asuman Ozdaglar, and Pablo A Parrilo. On the convergence rate of
incremental aggregated gradient algorithms. SIAM Journal on Optimization, 27(2):1035–1048,
2017.

[140] Ashok Cutkosky and Róbert Busa-Fekete. Distributed stochastic optimization via adaptive sgd.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31, pages 1910–1919. Curran Associates,
Inc., 2018.

[141] Jason D. Lee, Qihang Lin, Tengyu Ma, and Tianbao Yang. Distributed stochastic variance
reduced gradient methods by sampling extra data with replacement. Journal of Machine
Learning Research, 18(122):1–43, 2017.

[142] Hoi-To Wai, Nikolaos M Freris, Angelia Nedic, and Anna Scaglione. Sucag: Stochastic unbiased
curvature-aided gradient method for distributed optimization. In 2018 IEEE Conference on
Decision and Control (CDC), pages 1751–1756. IEEE, 2018.

[143] Hoi-To Wai, Nikolaos M Freris, Angelia Nedic, and Anna Scaglione. Sucag: Stochastic unbiased
curvature-aided gradient method for distributed optimization. arXiv preprint arXiv:1803.08198,
2018.

[144] Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. ASAGA: Asynchronous Parallel
SAGA. In Aarti Singh and Jerry Zhu, editors, Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine Learning Research,
pages 46–54, Fort Lauderdale, FL, USA, 20–22 Apr 2017. PMLR.

[145] Fabian Pedregosa, Rémi Leblond, and Simon Lacoste-Julien. Breaking the nonsmooth barrier:
A scalable parallel method for composite optimization. In Advances in Neural Information
Processing Systems, pages 56–65, 2017.

[146] Z. Peng, Y. Xu, M. Yan, and W. Yin. Arock: An algorithmic framework for asynchronous
parallel coordinate updates. SIAM Journal on Scientific Computing, 38(5):A2851–A2879, 2016.

[147] Martin Takáč, Peter Richtárik, and Nathan Srebro. Distributed Mini-Batch SDCA. arXiv
e-prints, page arXiv:1507.08322, Jul 2015.

[148] Tianbao Yang. Trading computation for communication: Distributed stochastic dual coordinate
ascent. In Advances in Neural Information Processing Systems, pages 629–637, 2013.



108 BIBLIOGRAPHY

[149] Pascal Bianchi, Walid Hachem, and Franck Iutzeler. A coordinate descent primal-dual algorithm
and application to distributed asynchronous optimization. IEEE Transactions on Automatic
Control, 61(10):2947–2957, 2015.

[150] Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In J. Shawe-
Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 24, pages 873–881. Curran Associates, Inc., 2011.

[151] V. Smith, S. Forte, C. Ma, M. Takac, M. I. Jordan, and M. Jaggi. CoCoA: A General Framework
for Communication-Efficient Distributed Optimization. ArXiv e-prints, November 2016.

[152] Chenxin Ma, Virginia Smith, Martin Jaggi, Michael Jordan, Peter Richtárik, and Martin Takác.
Adding vs. averaging in distributed primal-dual optimization. In International Conference on
Machine Learning, pages 1973–1982, 2015.

[153] Tianyi Chen, Georgios Giannakis, Tao Sun, and Wotao Yin. Lag: Lazily aggregated gradient
for communication-efficient distributed learning. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information
Processing Systems 31, pages 5050–5060. Curran Associates, Inc., 2018.

[154] Ruiliang Zhang and James Kwok. Asynchronous distributed ADMM for consensus optimization.
In International Conference on Machine Learning, pages 1701–1709, 2014.

[155] Mark Eisen, Aryan Mokhtari, and Alejandro Ribeiro. Decentralized quasi-Newton methods.
IEEE Transactions on Signal Processing, 65(10):2613–2628, 2017.

[156] Ching-pei Lee, Cong Han Lim, and Stephen J Wright. A distributed quasi-Newton algorithm
for empirical risk minimization with nonsmooth regularization. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 1646–1655.
ACM, 2018.

[157] Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed optimization
using an approximate Newton-type method. In International conference on machine learning,
pages 1000–1008, 2014.
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